
MIA: Mutual Information Alignment for Side

Information-Enhanced Recommendation with

Multiple Views

Zhaowei Zhang

Faculty of Electrical Engineering, McGill University, Montreal

October, 2021

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Engineering

©Zhaowei Zhang, 2021

Abstract

The past decade has witnessed significant progress in recommender systems. With the

development of information extraction technology, rich side information about the users

and items has become available. This provides an opportunity to enhance the system’s

understanding of users’ preferences. Several recent recommender systems use side infor-

mation to enhance performance by treating it as an extra “view”. The systems construct

latent representations of users and items by relating information from multiple views. In

other domains such as image classification, successful algorithms have demonstrated the

usefulness of maximizing mutual information across views. This approach has not been

explored in the setting of recommender systems with side information. In this thesis, we

propose a new side information enhanced recommender system called MIA, which esti-

mates Mutual Information across multiple views for Alignment. We compare the perfor-

mance with nine state-of-the-art methods across five datasets. We find that MIA achieves

significant improvement over all models that ignore side information. This demonstrates

the effectiveness of the proposed model in ingesting the additional information. How-

ever, the proposed model does not outperform some state-of-the-art baselines. There-

fore, further analysis is conducted to understand the limitations of MIA and to provide

a clearer explanation of the relationships with existing work. We explicitly identify the

alignment mechanisms and loss functions employed in other systems. Experimental re-

sults show that maximizing mutual information across views has a similar effect as mini-

mizing the cosine distance of the related representations once they have been transferred

into a unified space.

i

Abrégé

Ces dix dernières années, les systèmes de recommandation ont fait des progrès con-

sidérables. Avec le développement de la technologie d’extraction d’informations, de

riches informations secondaires sur les utilisateurs et les articles deviennent disponibles,

ce qui permet au système de mieux comprendre les préférences des utilisateurs. Un

paradigme des systèmes de recommandation améliorés par des informations secondaires

existantes intègre des informations secondaires supplémentaires dans une vue addition-

nelle, puis extrait la représentation latente de l’utilisateur et de l’article en reliant les infor-

mations de plusieurs vues. Bien qu’il existe un grand nombre d’algorithmes réussis qui

démontrent l’utilité de la maximisation de l’information mutuelle entre les vues, beau-

coup d’entre eux sont proposés pour d’autres domaines d’application tels que la classifi-

cation d’images, ou pour des systèmes de recommandation avec seulement des données

d’interaction. Sur la base de cette observation, nous proposons un nouvel algorithme

amélioré par l’information latérale appelé MIA qui estime l’information mutuelle entre

plusieurs vues pour l’alignement. Nous comparons ses performances avec celles de neuf

méthodes de pointe sur cinq ensembles de données. En particulier, nous constatons que

le cadre MIA proposé obtient une amélioration significative par rapport au modèle ne

prenant pas d’informations latérales en entrée, ce qui démontre l’efficacité du modèle

proposé à ingérer les informations supplémentaires. Cependant, le modèle proposé n’est

pas plus performant que certains des modèles de base. Par conséquent, une analyse plus

approfondie est menée pour comprendre les limites du MIA. Les résultats expérimentaux

montrent que la maximisation de l’information mutuelle entre les vues a un effet similaire

ii

à la minimisation de la distance cosinusoı̈dale des représentations connexes transférées

dans un espace unifié.

iii

Acknowledgements

Throughout this work I have received tremendous help and support. I would like to

start off by expressing my sincere gratitude to my supervisor Professor Mark Coates for

his constant involvement and support during this research process. The guidance and

insightful feedback he provided through those frustrating times can never be overesti-

mated.

I wish to acknowledge my colleagues Yingxue Zhang (Research Engineer from Huawei),

Florence Robert-Regol (PhD candidate), Chen Ma (PhD candidate) for all the scientific

discussions that we had and all the effort I have received along the way. I am also thank-

ful for every member of the McGill Computer Networks Research Lab for fostering a

friendly and enriching environment to work in.

Conducting research especially during the pandemic is not easy. Thank you Erdon for

always being there to listen, offer me advice and share your rich knowledge of machine

learning with me. Your patience and caring has been a precious support throughout.

Most of all, I am eternally grateful to my mom for profoundly believing in me and

always being a wise mentor and patient listener throughout my life. I could not have

completed this work without you.

iv

Table of Contents

Abstract . i

Abrégé . iii

Acknowledgements . iv

List of Figures . viii

List of Tables . ix

1 Introduction 1

1.1 Overview . 1

1.2 Thesis Contributions and Organization . 3

2 Background 7

2.1 Learning on Graphs . 7

2.1.1 Graphs: Definitions and Notation . 8

2.1.2 Node Embedding Learning . 11

2.1.3 Graph Neural Networks . 13

2.2 Recommender Systems . 17

2.2.1 Recommendation Scenarios . 18

2.2.2 Content-Based Filtering and Collaborative Filtering Recommenda-

tions . 19

2.2.3 Collaborative Filtering Techniques . 21

2.2.4 Graph-based Recommendation . 27

2.3 Mutual Information . 32

v

2.3.1 Introduction . 33

2.3.2 Mutual Information Estimation . 35

2.3.3 Mutual Information Maximization Solutions in Representation Learn-

ing . 38

2.4 Multi-View Representation Learning . 39

2.4.1 Preliminaries . 40

2.4.2 Multi-View Representation Fusion . 41

2.4.3 Multi-View Representation Alignment 42

2.5 Summary . 43

3 Related Work 45

3.1 Baseline Models . 46

3.2 Discussion . 55

3.3 Summary . 57

4 Side Information Enhanced Methods in A Unified Framework 59

4.1 Overview of the AIA Framework . 60

4.1.1 The Association Measure Function . 61

4.1.2 The Attribute Aggregator (Optional) 61

4.1.3 The Association Loss Function . 63

4.2 Item side Information Algorithms in AIA Framework 63

4.2.1 KGAT [1] . 64

4.2.2 Neural Factorization Machines (NFMs) [2] 66

4.2.3 CLIP [3] . 67

4.3 Discussion . 71

4.4 Limitations of the AIA Framework . 72

4.5 Summary . 73

5 Mutual Information Alignment (MIA) 74

vi

5.1 Problem Definition . 74

5.2 Overall Structure . 75

5.2.1 MIA in the AIA Framework . 75

5.2.2 User-item View . 75

5.2.3 Attribute View . 77

5.2.4 Mutual Information-Based Multi-view Alignment 78

5.2.5 Model Prediction . 80

5.2.6 Model Training . 80

5.3 Experimental Settings . 81

5.3.1 Dataset . 81

5.3.2 Evaluation Protocols . 83

5.3.3 Baseline Algorithms . 84

5.3.4 Parameter Settings . 85

5.4 Results . 86

5.4.1 Impact of Item-Attribute Association Functions (RQ1) 86

5.4.2 Comparison with Baselines (RQ2) . 87

5.4.3 Further Analysis of KGAT VS. MIA 90

5.5 Summary . 93

6 Conclusions 94

vii

List of Figures

2.1 Examples of variants of graphs . 9

2.2 Illustration of the node embedding problem. 11

2.3 Demonstration of the two major recommendation algorithms. 19

2.4 Categories of collaborative filtering recommendation models. 21

2.5 An illustration of the message passing framework. 28

3.1 Illustration of the MGCCF framework. 47

3.2 Illustration of the KGAT framework. 50

4.1 Overall structure of the AIA framework. 62

4.2 The overall architecture of CLIP adapted in a recommendation scenario. . . 69

5.1 The overall architecture of MIA. 76

5.2 Convergence speed comparison between MIA and KGAT. 92

viii

List of Tables

3.1 Notation Used in Chapter.3 . 46

4.1 A summary of association measures employed in state-of-the-art baseline

algorithms. 64

4.2 A summary of association loss functions for state-of-the-art baseline algo-

rithms. 64

5.1 Comparison of different association measure functions. 80

5.2 Statistics of evaluation datasets. 82

5.3 Comparison of different item-attribute association methods on six datasets. 86

5.4 Overall performance comparison w.r.t Recall@20 and Ndcg@20. 88

5.5 Comparison of the per epoch training times over six datasets. 91

ix

Chapter 1

Introduction

1.1 Overview

With the rapid development of the Internet, the volume of online information being gen-

erated has increased in the past two decades, which has created an information overload

problem for many internet users. Therefore, recommender systems have been used as an

effective solution to search through this information and provide users with personalized

contents and service. Whether they are employed to support media consumption or to

increase sales, recommender systems are now ubiquitous in our daily experience. For

example, Amazon recommends products based on our purchase history [4, 5]; YouTube

recommends videos based on our viewing history [6]; Spotify recommends songs based

on songs that we have listened to [7].

One dominant framework for recommender systems is the Collaborative Filtering

(CF) technique which builds on the assumption that users with similar interaction pat-

terns for a subset of items have similar preferences. These interactions can include the

purchase or click history of users. The major task of a CF-based recommender system is

to exploit user-item (UI) relations and predict potential interactions between users and

items. Specifically, it focuses on learning latent representations for users and items such

that UI interactions could be reconstructed.

1

Early matrix factorization (MF) methods tend to directly map user/item ID into an

embedding space and model the UI interaction as an inner product of the corresponding

user and item embedding pair [8]. With the development of deep learning, extensions are

proposed to extend MF methods by adding in non-linear neural networks in the process

of embedding generation or interaction modelling [9–11]. Despite the effectiveness of the

matrix factorization technique for collaborative filtering, its performance is notoriously

unstable and can be hindered by the simple choice of the interaction function. In other

words, the collaborative signal is not properly captured by the aforementioned models.

When modelling user-item interaction, it is natural to consider a graph representation

which is well-known for its power to concisely represent the relational information within

its structure [12]. As a result, many graph-based recommendation algorithms have been

proposed and achieved promising progress by exploring the collaborative signal propa-

gation in UI bipartite graphs under the graph neural network framework [1, 13–15].

One practical issue concerning the conventional CF-based recommender system is that

ratings are inferred from the UI matrix and thus the system can struggle to draw any in-

ferences for items with few or no interactions, also referred to as “cold items” [16–18].

Therefore, recommendations on these items are no better than random. One way to over-

come this problem of learning representations for items with few interaction records is

to use item attributes. The information residing in these attributes is referred to as item

side information. In recent years, with the increasing availability and quality of item at-

tributes, multiple strategies have been proposed that strive to learn more comprehensive

item representations by integrating such side information [1, 2, 19, 20]. Intuitively, item

side information can be considered as another view of an item, distinct from the user’s

perspective. With this viewpoint in mind, more recent work has focused on utilizing the

multi-view representation learning method in side information enhanced recommenda-

tions [13, 21].

Despite the great success of these side information enhanced recommender systems,

there lacks a unified framework to compare these methods from the perspective of attribute-

2

item association (AIA). For example, Wang et al. present their work in [1] following a graph

representation learning framework where AIA is a combination of information propaga-

tion and information aggregation. Zhou et al. describe the AIA process in [21] as a self-

supervised learning framework. In [20], Vasile et al. explain AIA from the perspective of

matrix factorization. Therefore, the true difference of how category information is fused

into item representations among these methods remains mysterious.

As such, the central goal of this research is to study and compare the factors that

lead to success in side information enhanced recommendations. To achieve this goal, we

first develop a unified framework that explicitly highlights the AIA diversity of various

methods given equal notations. Specifically, we organize the various method based upon

two key functions: the AIA function and its corresponding loss function.

In addition, inspiring by the recent success of mutual information maximization (MIM)

application in the field of image classification [22, 23], we propose an item side informa-

tion enhanced recommendation method which exploits the Mutual Information Align-

ment (MIA) technique in the multi-view representation framework.

1.2 Thesis Contributions and Organization

The major contributions in this thesis can be summarized as follows:

• We propose that many of the existing side information enhanced recommendation

approaches can be organized within a unified framework from the item-attribute

association perspective. Details are provided in Chapter 4.

• Motivated by the recent progress in the application of mutual information max-

imization in representation learning, we proceed to develop a mutual information

alignment-based (MIA) multi-view representation learning algorithm for top-N rec-

ommendation task, as presented in Chapter 5.

The rest of this thesis is structured as follows:

3

• Chapter 2 - Background

In this chapter, some detailed background materials essential to understanding the

thesis research are provided. We start with a brief review of the theoretical founda-

tion of graph theory and a high-level overview of node embedding learning meth-

ods and graph neural networks. Then, we continue to give a formal definition of the

recommendation problem and survey key advances in this area. Subsequently, we

present the mutual information principle and describe recent progress in its applica-

tion to the image classification task. Lastly, we provide a comprehensive review of

multi-view representation learning approaches from the alignment and fusion per-

spectives. This provides the necessary background for our proposed unified frame-

work.

• Chapter 3 - Related Work

This chapter focuses on reviewing recent progress in side information enhanced

recommendation approaches. These are closely related to our work and inspire

some of our architectural choices.

• Chapter 4 - Side information Enhanced Methods in A Unified Framework

This chapter contains the first research contribution of the thesis. In this chapter,

we develop a unified framework with which we can express many of the exist-

ing strategies for side information enhanced recommendation. The value of such

a framework is that the similarities and differences between existing methods are

immediately apparent. This makes it much easier to assess why one method might

outperform another and can motivate future research directions. The framework

consists of two components: an item-attribute association function which computes

the association score between an item-attribute pair, and an association loss function

which is used to train the item-attribute association function. We demonstrate how

a selection of representative methods [1–3, 21] can be expressed in this framework.

4

We establish the equivalence between the expression of each method in the original

paper and the expression in our proposed framework. We also introduce an adapted

method, CLIP [3], which was originally proposed as a solution to the image classifi-

cation problem. The Huawei machine learning researcher Yingxue Zhang first sug-

gested adapting CLIP to be used in the recommendation scenario. Ph.D. student

Haolun Wu conducted initial experiments to prove the effectiveness of this idea. I

implemented the same model independently and tested its performance on another

six different datasets. The development of the framework, the derivation of proofs

and the experimental results related to CLIP presented throughout this thesis were

my contribution. My supervisor, Prof. Mark Coates, provided guidance and feed-

back about the methods and results.

• Chapter 5 - Mutual Information Alignment (MIA)

This chapter contains the second contribution of the thesis. We present a flexible mu-

tual information alignment-based multi-view representation learning approach for

the top-N recommendation task and report the experimental results. This approach

models the UI interaction and item attributes as two views of items and aims to max-

imize the mutual information between related embeddings from these two views to

improve the quality of item representations. Extensive experiments are conducted

on six public real-world benchmark datasets from various domains. We compare

six state-of-the-art baselines. The results demonstrate that the proposed algorithm

can achieve comparable (and often slightly superior) performance to the best base-

lines while requiring significantly less training time. The algorithm development

and implementation were my contributions, and I also conducted all experiments

and subsequent analysis of results. My supervisor, Prof. Mark Coates, provided

guidance and feedback about the methodology and the experimental results.

• Chapter 6 - Conclusions

5

In this chapter, the research contributions are summarized. We discuss the research

findings and suggest some avenues for future work.

6

Chapter 2

Background

In this chapter, we provide necessary background material. We first provide a brief review

of methods for learning from graphs and data on graphs. We introduce graph notation,

provide an overview of graph neural networks, and present some of the state-of-the-art

node embedding learning methods in Section 2.1. This is followed in Section 2.2 by an

introduction to the problem of recommender systems. We identify categories of recom-

mender systems, describe classic approaches, and briefly review the state-of-the-art. In

Sections 2.3 and 2.4 we cover two major techniques used in our proposed model: mu-

tual information maximization and multi-view representation learning. In Section 2.3,

we first provide the definition of mutual information and then survey estimation strate-

gies. Some recent applications in representation learning are also presented. In 2.4, we

clarify the categorization of multi-view representation learning methods and provide a

summary of recent works.

2.1 Learning on Graphs

The research in this thesis focuses on graph-based recommender systems, where interac-

tion and side information data are usually viewed in the form of a bipartite graph or a

knowledge graph. Therefore, in this section, we introduce terminology commonly used

7

in graph analysis. This is accompanied by a description of some of the important work in

the field of graph representation learning.

2.1.1 Graphs: Definitions and Notation

Definition

Graphs are widely used to represent data that are associated with interacting or related

entities. They have been employed in a wide range of machine learning applications,

such as detecting molecular fingerprints from the biological structure [24], recommend-

ing friends via social networks [25], and classifying diseases from medical images [26].

The primary task associated with learning on graphs is to generate the graph structure

representation which can be exploited by the machine learning models.

Formally, a graph can be described as G = (V , E), where V and E represent the sets of

vertices and edges respectively. An edge is defined to be the component that connects a pair

of nodes, i.e. , E ⊆ V × V . For an edge, e = (v, u), v and u are called the endpoints of the

edge e. If v = u, this edge is also called a self-loop. The neighborhood of a node v is defined

as N(v) = {u ∈ V |(v, u) ∈ E}. The order and size of a graph G are defined as the number

of vertices and the number of edges of the graph, respectively.

An efficient way to describe the graph structure is through its adjacency matrix A ∈

R|V |×|V |. The rows and columns are indexed by vertices and the elements are defined as:

Au,v =


weu,v > 0 if eu,v ∈ E ,

0 otherwise .
(2.1)

In this expression, wu,v is the edge weight and it is equal to 1 for unweighted graphs.

Another widely used matrix to analyze G is the degree matrix D ∈ R|V |×|V |. This is a

diagonal matrix in which each diagonal entry is equal to the degree of the corresponding

vertex v, i.e. , Dv,v = d(v).

8

Graph Types

The simplest graph has homogeneous nodes and undirected edges. The representation

capability of a simple graph can be extended by including directed edges, assigning

weights to the edges, or imposing a specific topological structure. Some examples are

shown in Figure 2.1.

(a) Simple graph (b) A directed graph

(c) Weighted graph (d) Bi-partite graph

Figure 2.1: Examples of variants of graphs

In a directed graph an edge e = (u, v) denotes the existence of a path from the head

u to the tail v and e = (u, v). This does not imply the existence of the edge e = (v, u).

Directed graphs are commonly used to construct knowledge graphs. For example, in [1],

a model is proposed to propagate information on a knowledge graph with multiple kinds

of edges. There is a directed edge from a user node to an item node if the user interacted

9

with the item. There is a directed edge from an item node to a category node if the item

belongs to that category.

In a weighted graph, we assign positive, real-valued weights to each edge, and can

denote the graph as G = (V , E , w). Alternatively, we can assign a categorical type to each

edge, and represent the graph as G = (V , E , w). In the context of recommender systems,

the set of user-item relationships is often modelled as a bipartite graph. In such a graph,

there exist two groups of nodes and an edge can only exist if its endpoints belong to

different groups. Each vertex in V corresponds to a user or an item in the dataset, and an

edge in E represents an interaction between a user and an item.

In an attributed graph, a feature vector is often associated with each node. Much of the

earlier work addressing the task of node embedding learning involved the application of

statistical methods. The statistical methods extract feature information from node-level

statistics such as the node degree, centrality or clustering coefficient. However, these

types of methods have limitations: the hand-engineered features are inflexible and time-

consuming to design. Therefore, the methods are difficult to adapt to a deep learning

framework.

In the following two sections, we briefly survey an alternative approach to learn node

embeddings: graph representation learning. Instead of extracting hand-engineered features,

the objective of graph representation learning is to learn representations that encode in-

formation about the structure of each node in the graph. The representations can be

adapted so that they can be incorporated into modern machine learning models. We dis-

cuss two major paradigms of graph representation learning approaches that are closely

related to our research topic. First, in Section 2.1.2, we introduce the shallow embedding

approaches [27] where a unique embedding for each node is learned. Then, in Section

2.1.3, we extend the discussion to graph neural networks (GNNs), which aim to generate

node embeddings through message passing algorithms and neural layers.

10

2.1.2 Node Embedding Learning

The problem of node embedding can be formalized as follows: Given an undirected,

(weighted) graph G = (V , E ,A), the objective is to learn a function f : V → Rd, d ≪ |V|

that maps each node to a d−dimensional vector while preserving its structural properties.

The output representations X ∈ R|V |×d can then be used in a variety of subsequent tasks

such as node classification or link detection.

Many of the node embedding learning methods aim to learn an encoder ENC in an

unsupervised way [28–30]. The encoder projects nodes into a continuous latent space

with a relatively small dimension. The geometric relations in the latent space should

reflect the original graph relationships, as illustrated in Figure 2.2.

Figure 2.2: Illustration of the node embedding problem. Adapted from [31].

One successful type of node embedding method makes use of random walks on graphs

to derive suitable embeddings [30,32]. In general, these methods first sample a set of ran-

dom walks with pre-defined length from each node and then apply the Skip-gram algo-

11

rithm to optimize the node embeddings such that nodes with similar embeddings tend to

co-occur on the same walk.

In [31], Hamiltion et al. propose a generalized encoder-decoder framework for random-

walk based algorithms where the decoder function and the loss function are defined as

follows:

DEC(zu, zv) ≜
ezTu zv∑

vk∈V ezTu zv
≈ pG,T (v|u) , (2.2)

L =
∑

(u,v)∈D

− log(DEC(zu, zv)) , (2.3)

where pG,T (v|u) denotes the probability of visiting v on a random walk with length T

starting from u, and D denotes the set of random walks starting from each node. In (2.2),

proximity is no longer measured between every pair of nodes but only between adjacent

nodes in a sampled walk. Moreover, the decoder output is defined in an asymmetric

way which makes the learning more robust. Since the decoder output is approximately

equal to a probability, it is natural to use cross-entropy loss to train the decoder, as de-

fined in (2.3). However, directly evaluating (2.2) is computationally expensive, with time

complexity O(|D||V |). To efficiently optimize (2.3), certain approximations need to be

made.

DeepWalk [32] employs a hierarchical softmax technique to compute the normalizing

factor (i.e., the denominator) using a binary-tree structure. On the other hand, node2vec

[30] approximates the normalizing factor in (2.3) using a noise contrastive approach:

L =
∑

(u,v)∈D

− log(σ(zTuzv))− βEvn∼Pn(V)[log(−σ(zTuzv))] (2.4)

where vn denotes the negative sample, Pn(V) is the distribution over the set of nodes V ,

where uniform distribution is normally used, and β > 0 is a hyperparameter used to

control the contribution of negative samples.

12

In addition to DeepWalk and node2vec, Tang et al. propose another successful node

embedding algorithm named LINE in [33] which is designed to preserve both the local

and global structures in the graph. It is conceptually related to DeepWalk and node2vec

in the way that they all use a probabilistic decoder and loss. But instead of measuring

similarity from randomly sampled walks, LINE explicitly factorizes the first- and second-

order proximities with a carefully designed objective. More specifically, the first objective

of encoding first-order adjacency information can be defined as:

DEC(zu, zv) =
1

1 + e−zuzv
≈ A(u, v) . (2.5)

The second objective of encoding two-hop neighborhood (i.e. , the information in A2) is

very similar to (2.2):

DEC(zu, zv) ≜
ezTu zv∑

vk∈V ezTu zv
≈ p2(v|u) , (2.6)

where p2(v|u) represents the conditional probability of v generated by u. To train (2.6),

the goal is to minimize the distance between the estimated distribution p2(v|u) and the

empirical distribution p̂2(v|u) =
wuv

du
, where wuv denotes the weight of the edge (u, v) and

du is the out-degree of u. KL-divergence is used to measure the distance. The final rep-

resentation for each node is a concatenation of the outputs from the first and the second

objectives.

The node embedding approaches we discussed so far aim to generate a unique em-

bedding vector for each node. It is challenging to apply such approaches to large datasets

or dynamic graphs. To alleviate these limitations, researchers have experimented with

replacing the shallow encoder with a more complicated encoder [29,34–36]. This leads to

the topic of discussion in the next section: graph neural networks (GNNs).

2.1.3 Graph Neural Networks

Another popular paradigm for learning low-dimensional embeddings of nodes in a graph

is the graph neural network (GNN), first proposed in [37]. A GNN is a deep neural net-

13

work defined on graph data and it usually aims to learn the state embedding hv ∈ Rs for

each node. The embedding contains information about a node’s neighbourhood through

the message propagation algorithm, which can be applied in a semi-supervised or self-

supervised setting. Moreover, GNNs can directly perform a classification or regression

task based on the extracted state embedding, i.e., they can be trained in an end-to-end

fashion. This tends to improve efficiency and result in better performance for the target

learning task.

Generally speaking, the objective of a GNN is to learn a trainable transition function

f shared among all the nodes which takes the input node features and its neighborhood

as input. The propagation rule and the output can be defined as follows:

hv = f(xv,x
e
co[v],hne[v],xne[v]) , (2.7)

ov = g(hv,xv) (2.8)

where g is the local output function.

In a compact form, the above equations can be expressed as:

H = F (H,X) , (2.9)

O = G(H,XN) , (2.10)

where F , G, are the stacked versions of the transition functions, output functions, H,

O are the state embeddings and outputs produced and XN , X represent the node features

and all the features (including node features and edge features), respectively.

The GNNs can also be modified to incorporate different types of graphs or mecha-

nisms [1, 14, 36, 38]. These variants usually follow the same feed-forward neural network

setting as in the output step but adopt a different propagation rule to aggregate and up-

date the neighbourhood information. In the rest of this section, we will introduce a few

variants related to the context of this thesis.

14

Graph Convolutional Networks

Graph Convolutional Networks (GCNs) generalize the convolution mechanism in the

graph domain and can often be categorized into spectral methods [34, 39, 40] and spatial

methods [36, 41–43]. Given the input features from all nodes in the local neighborhood

of node i, the information of the local neighbourhood gets combined over the layers of

convolutions, in a similar fashion to the way edge and higher level features are extracted

when a classical CNN operates on images.

Spectral methods works with the spectral representation of the graphs. Convolution

is defined in the Fourier domain and usually involves computation of the eigendecom-

position of the graph Laplacian, L = D − A, which contains a significant amount of

information about the graph structure. More frequently, the symmetric normalized form

of the Laplacian is used in the aggregation step as it ensures that the eigenvectors satisfy

some useful properties:

Lsym = D−
1
2LD

1
2 = I−D−

1
2AD

1
2 (2.11)

Lsymij =


1 if i = j,

− 1√
didj

if(i, j) ∈ E ,

0, otherwise

(2.12)

However, the computation of L or Lsym is usually expensive with the computational

complexity of O(n3). Moreover, the trained model is restricted to a specific structure

defined by the eigenbasis and cannot generalize across graphs. Additionally, spectral-

based methods are based on the assumption that the graph is undirected. Therefore, their

application is limited.

Spatial methods On the other hand, spatial methods define graph convolutions based

on a node’s spatial relations. Analogous to convolution in computer vision, the idea of

15

spatial methods is to convolve the central node’s information with its neighbours’ infor-

mation. By stacking multiple convolutional layers, node information is propagated along

edges. Such methods enable parameter sharing across nodes and thus increase efficiency

and can be used to generate embeddings for nodes that were not observed during train-

ing.

One of the challenges of spatial approaches is to define an aggregator which can han-

dle nodes with different degrees while maintaining the weight sharing property. In [42],

Duvenaud et al. propose to learn a specific weight matrix for each node degree. Atwood

et al. suggest in [44] to consider the message passing process from a probabilistic per-

spective and assume that the information distribution can reach equilibrium after several

rounds. It uses the transition matrix to define the diffusion process where information

is transferred from one node to another with a certain probability. On the other hand,

Niepert et al. propose in [36] to extract and normalize the neighbourhood to contain a

fixed number of neighbours. Hamilton et al. introduce a neighbourhood sampling strat-

egy in [35] to construct a fixed-size neighbourhood for each node.

Graph Recurrent Networks

Inspired by Recurrent Neural Networks (RNNs), another trend is to use the gate mecha-

nism in the propagation step [45,46]. Adapting the GNN framework to employ recurrent

units enables usage of the output of intermediate embeddings from the previous layers

and thus encourages long-term propagation. A gate is a unit to control information flow

and usually is composed of an activation function and element-wise multiplication. Pop-

ular gates include Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM). In

general, the hidden state computation after inserting the gate mechanism into the graph

convolutional layer can be expressed as follows:

H(t) = σ(CONV(X(t),A;W) + CONV(H(t−1),A;U) + b) , (2.13)

16

where X(t) ∈ Rn×d denotes the feature matrix for n nodes each with d features and U is

the gate unit.

Graph Attention Networks

The attention mechanism assumes that the contributions of neighbouring nodes are nei-

ther identical nor pre-determined but learnable. It allows the network to focus on the

most relevant part of the neighbourhood of its input and is extremely useful in sequence-

based tasks. Variants of Graph Attention Networks (GATs) mainly differ in their defini-

tion of the attention scores which are assigned to each neighbour in order to identify the

most important part [47–49]. In general, the final hidden state of a node can be expressed

as:

hi = σ(
∑
j∈Ni

αijWhj) (2.14)

Velickovic et al. introduce a model named GAT in [50] which defines a single graph

attention layer and stacks multiple such layers together to construct a graph attention

network. It uses a multi-head mechanism where K independent attention mechanisms

are applied to each node to compute hidden states. The computed states are then com-

bined either through concatenation or element-wise sum to form the final representations.

Compared to GAT, Zhang et al. also use the multi-head mechanism but heads are now as-

signed different weights which are learned through a self-attention mechanism [51].

2.2 Recommender Systems

In this section, we briefly review the relevant background material concerning recom-

mender systems, mutual information maximization, and multi-view representation learn-

ing. We first identify a variety of different recommendation scenarios in Section 2.2.1.

This is followed by an introduction of the two major categories of existing recommender

systems and a discussion of their major differences in Section 2.2.2. We then summa-

17

rize different types of collaborative filtering techniques in Section 2.2.3. state-of-the-art

graph-based recommender systems are presented in Section 2.2.3. Note that the models

reviewed in this chapter will focus on implicit data only. However, we discuss models

incorporating analysis of item side information in Chapter 3.

2.2.1 Recommendation Scenarios

Recommender systems (RS) have been playing an important role for enhancing efficiency

in decision making, especially in this information-overloaded era [1, 6, 14, 15, 52]. Re-

cently, a new paradigm of recommender system named sequential recommendation (SRS)

has emerged which takes into consideration the temporal order of the interactions. An-

other paradigm of recommender system which is closely related to SRS and often con-

fused with it is called session-based recommendation (SBRS).

The major difference between RS, SBRS and SRS is the input data. RS takes the entire

set of interactions as input, while SBRS builts upon session data, and SRS on sequence

data respectively. Session data systems slice the interactions into several sub-lists with

clear boundaries (e.g. , interactions of a user within a year, purchased items within a sin-

gle order). The chronological order of interactions within a sub-list (session) is ignored.

By contrast, a sequence data approach considers all sequential dependencies of the inter-

actions (e.g. , sorted in order of timestamp).

Although the general objective of all types of recommender systems is the same (gen-

erate a list of recommendations for a user), there are minor differences between the spec-

ification of this goal for the different types. An SRS aims to capture the short-term user

interest and provide a timely recommendation according to the evolution of user prefer-

ences. An SBRS aims to predict either the unknown part of a session given the known

part, i.e. , “bundle” prediction, or the next session given the historical sessions, i.e. , the

next “basket” prediction. In this thesis, we focus on the traditional recommender system

scenario where user preference is assumed to be static.

18

2.2.2 Content-Based Filtering and Collaborative Filtering Recommen-

dations

Categorized by the input data, Collaborative Filtering (CF) and Content-Based Filtering

(CB) are the two most basic and popular paradigms for recommender systems. They are

demonstrated in Figure 2.3.

Figure 2.3: Demonstration of the two major recommendation algorithms.

The content-based filtering approach recommends items that are similar to what the

user likes based on interaction history or explicit feedback [53–55]. Items are usually

represented in a feature matrix, and the goal is to learn user representations in the same

feature space. During recommendation, CB methods do not need any information about

other users but only the item features and the learned user embedding. Therefore, CB

methods are better at recommending cold items which not many users have interacted

with. However, since the feature matrix is usually hand-engineered in conventional CB

methods, the model’s performance is limited by the quality of the engineered features.

19

Unlike content-based filtering systems which require informative item features, con-

ventional CF-based methods are based on the assumption that users with similar tastes

would like similar things. This allows collaborative filtering models to learn a user pref-

erence based on the interests of similar users. Consider an e-commerce scenario. A CF-

based system usually takes as input the interaction history in the form of a user-item (UI)

interaction matrix where each row represents a user and each column represents an item.

The feedback about items can either be explicit, in which users explicitly specify how

much they are satisfied with the purchase, or implicit, in which the system infers that the

user is interested in an item if there is a purchase record. The key task of a conventional

CF model is to learn the user and item embeddings and to reconstruct the historical inter-

actions based on the embeddings, i.e. , given an item embedding, the goal of the system is

to learn an embedding for a user to best explain his/her preference. Analogously, given a

user embedding, the system learns the item embedding that best explains the UI matrix.

As a result, the embeddings are learnt collaboratively from multiple viewpoints, which is

how this type of approach is named. The distance between embeddings in the latent fea-

ture space is usually used to direct the learning process. In general, we expect that if an

item and a user are close in the latent feature space, then it is likely that the user will rate

that item highly. Similarly, if embeddings of users are close to each other in the latent

feature space, then they are considered to have similar preferences on items.

20

2.2.3 Collaborative Filtering Techniques

Figure 2.4: Categories of collaborative filtering recommendation models.

Figure 2.4 provides an overview of collaborative filtering techniques. In general, CF tech-

niques can be divided in to two categories: memory based and model based.

Memory-based approaches formulate recommendations for a user by finding items

that similar users like, either based on similarity of ratings or interaction history. Consider

user-user similarity as an example. The memory-based approach treats each user’s row in

the UI matrix as a vector r and measures the cosine similarity between two users defined

as follows:

similarity(u, u′) = cos(θ) =
ru · ru′

∥ ru ∥∥ ru′ ∥
(2.15)

The system can then predict user u’s rating of item i by taking the weighted sum of

the target item’s ratings from all other users and then normalizing it by the sum of the

weight:

r̂ui =

∑
u′ similarity(u, u′)ru′i∑
u′ | similarity(u, u′) |

(2.16)

21

The memory-based approach measures the similarity between users or items by pure

arithmetic operations and does not learn any user or item embeddings. Therefore, it does

not involve any training or optimization step. It is easy to implement and the results are

highly explainable. However, when the interaction data is sparse, which is usually the

case in the recommendation scenario, the performance of the memory-based approach

drops significantly.

On the other hand, model-based recommender systems use machine learning algo-

rithms and can be further categorized into three sub-categories: clustering-based, matrix

factorization based and deep learning-based.

Matrix Factorization Methods

The matrix factorization (MF) approach is a popular technique based on the assumption

that user preference is determined by a small number of hidden factors [2, 56–58]. In its

natural form, matrix factorization characterizes items and users using vectors of factors

inferred from item rating patterns, i.e. , it decomposes the rating matrix into the low-

dimensional user and item latent factors. High correspondence between item and user

factors leads to a recommendation. In a song recommendation scenario, for example, each

factor in the user embedding measures how much the user likes songs that score high on

the corresponding song factor. Formally, given the interaction matrix R ∈ Rm×n, the

model objective is to factor R into the user and item embeddings, denoting as P ∈ R|U |×d

and Q ∈ R|I|×d respectively, whose product is a good approximation of the interaction

matrix R:

R̂ = PQT ≈ R . (2.17)

In general, this factorization can be considered as an optimization problem:

min
P,Q

∥ R−PQT ∥2 , (2.18)

22

where ∥ · ∥ denotes the Frobenius norm. In practice, in order to avoid over-fitting, it is

common to add regularization terms in the objective function,

min
P,Q

(∥ R−PQT ∥2 +λ(∥ P ∥2 + ∥ Q ∥2)) . (2.19)

Matrix factorization methods are highly flexible in dealing with various data as they do

not require any hand-engineered feature inputs. However, their disadvantage is also ob-

vious. Since the prediction is the dot product of the corresponding user and item embed-

dings, the system cannot generate a recommendation for an item if it is not seen before.

This is called the cold-start issue in the recommendation scenario. To alleviate the cold-

start issue, a variety of works have proposed to include side information from additional

sources [1, 13, 21, 59].

In [60], Rendle et al. propose a general framework named the Factorization Machine

(FM) which can model higher-order interactions to find stronger relationships between

the latent representations of each feature. Unlike traditional MF models which directly

factorize the user-item interaction matrix, the FM represents the interaction as binary

vectors of user and item indicators such that in the matrix of training data, each row

represents an interaction record with at least two non-zero entries corresponding to the

given user-item pair. Moreover, this framework could easily integrate side information

by concatenating the training matrix with the auxiliary information matrix. A two-way

factorization machine considering up to the second-order interactions generates ratings

as follows:

f(x) = w0 +
d∑

i=1

wixi +
d−1∑
i=1

d∑
j=i+1

⟨vp,vq⟩xpxq , (2.20)

where x is the d-dimensional vector in the (augmented) feature matrix, w ∈ Rd is the

weight vector, and ⟨vp,vq⟩ denotes the dot product of two latent feature vectors. He et al.

further generalize the FM under a neural network framework in [2]. An advantage of do-

ing so is to relax the linear assumption on the feature interaction which could significantly

expand the model expressiveness especially when it comes to larger datasets.

23

Forbes et al. suggest in [61] to incorporate side information into the MF framework as

a linear constraint. Given the content information for items, this method assumes that the

item features depend explicitly on the content information:

Q = XΦ , (2.21)

where X ∈ Rn×k is the item side information and Φ ∈ Rk×d denotes the feature embed-

dings.

In [62], Zhang et al. propose to project item side information into the same latent factor

space as users and items. Each kind of side information is represented by a latent factor

matrix. For example, consider a dataset that provides two extra sources of item side

information, category and actors, covering nc categories and na actors in total. In this

case, a set of item features with two latent factor matrices is constructed: F = Fc,Fa where

Fc ∈ Rnc×d and Fa ∈ Rna×d denote the category and actor feature matrices, respectively.

The final representation of an item is then a linear combination of its latent representation

computed from the interaction matrix, as well as the related item features:

r̂ui = PT
u (Qi +

T∑
t=1

∑
a∈Ft(i)

yt(a)

|Ft(i)|
) + bui , (2.22)

where |Ft(i)| denotes the number of all possible attributes of feature Ft for item i and

yt(a) is the d-dimensional vector representing attribute a of feature Ft.

Deep Neural Network Based Method

In contrast to linear models like matrix factorization methods, deep neural network (DNN)

based methods to relax the linear assumption which tends to limit the model expressive-

ness. This is achieved by adding nonlinear activation functions such as ReLU, Tanh, and

sigmoid. Due to the flexibility of the input layer design, a deep neural network can easily

incorporate side information, which may help in user and item representation learning.

24

Depending on the architecture design and the mechanism being used, DNN based

methods can be further categorized into Multi-Layer Perceptron (MLP) based recom-

mendation, Auto-Encoder (AE) based recommendation, Convolutional Neural Network

(CNN) based recommendation, Recurrent Neural Network (RNN) based recommenda-

tion, Generative Adversarial Networks (GAN) based recommendation. Hybrid models

combine more than one of these deep learning techniques.

Multi-Layer Perceptron (MLP) Based Recommendation A set of methods combine the

power of linear models along with MLP. In general, let W(l) and b(l) respectively denote

the weight and bias term of the l-th layer. The output of each layer can then be defined

as:

h(l+1) = f(W(l)Th(l) + b(l)) , (2.23)

where f(·) is the activation function. The network can usually be trained using cross-

entropy loss, defined as:

L = argmin− log
eyui∑
j e

yuj
, (2.24)

where yui denotes the predicted preference score of user u to item i.

Cheng et al. describe in [63] a deep neural network for YouTube video recommen-

dations where there are two major components: deep learning and wide learning. The

deep learning component adopts MLP to generalize previously unseen feature interac-

tions into low-dimensional embeddings. The wide learning component is a linear model

(e.g. , a factorization machine) that is used to effectively memorize sparse feature inter-

actions using cross-product feature transformations. Guo et al. further extend the model

in [19] by seamlessly integrating a factorization machine with an MLP. It can model the

high-order feature interactions via deep neural networks and low-order interactions with

factorization machines without tedious feature engineering. In [2], He at al. introduce a

bilinear-interaction pooling layer that allows a neural network model to learn more in-

formative feature interactions at the lower level by converting a set of embedding vectors

into one vector. This k-dimensional vector is then fed into a stack of fully connected lay-

25

ers to learn the higher-order interactions between features. Lian et al. further extend [19]

by learning the explicit high order feature interactions through a compressed interaction

network (CIN) [64].

Auto-Encoder Based Recommendation Another popular paradigm of recommender

system design takes advantage of the superiority of auto-encoders in learning underly-

ing feature representations [11, 65, 66]. An auto-encoder system usually consists of an

encoder layer, a bottleneck layer and a decoder layer. In general, the encoded vector

z at the bottleneck layer is a salient compressed low dimensional representation of the

input data and the objective for an auto-encoder is to reconstruct its input data in the de-

coder layer. Almost all of the variants (denoting AE, variational AE, connective AE, and

marginalized AE) can be applied to the recommendation task (e.g. , to fill in the blanks of

the UI interaction matrix in the reconstruction layer).

Sedhain et al. extend the vanilla auto-encoder model in [11] to the collaborative fil-

tering setting. It takes as input each row of the UI-interaction matrix R ∈ Rm×n as the

partially observed user vector where r(u) = (Ru1, . . . ,Run) ∈ Rn, and the encoded vector

z can be represented as:

z = g(Vr(u) + µ) , (2.25)

where g(·) is the activation function. The objective is to solve the following problem:

argmin
θ

∑
r(u)∈S

∥ r(u) − h(r(u), θ) ∥22 (2.26)

where h(·) is a single layer auto-associative neural network. A similar method can also

be applied to the column of the interaction matrix to form an item-based learning model.

In [10], Liang et al. propose a model named MultiVAE which adapts the variational

auto-encoder (VAE) idea to the collaborative filtering setting. The difference between VAE

and the vanilla AE is that the encoded input at the bottleneck layer is now a probability

distribution of the input data instead of a point estimate. MultiVAE replaces the likelihood

26

function with Bayesian inference; it takes as input the click history xu and outputs the

corresponding variational parameters µu, σ
2
u.

Handling temporal information is crucial for improving the accuracy of VAEs. Sachdeva

et al. propose in [67] a recurrent version of MultiVAE that passes the consumption se-

quence subset through a recurrent neural network.

2.2.4 Graph-based Recommendation

In the graph setting, interactions among users and items can naturally be modeled as

edges in a bipartite graph. In the past decade, GNNs have been intensively studied in the

field of recommender system. As introduced in Section 2.1.3, the GNN framework often

consists of two stages: 1) graph feature extraction; and 2) link prediction. In recommender

system settings, the stages can be translated into: 1) item and user representation learning;

2) user-item relationship inference/prediction. In the rest of this section, we review and

compare [68], [38], [69], [14], and [15] from the following five aspects:

• item and user representation learning

– message construction

– message aggregation

– higher-order message propagation

– final representation generation

• user-item relationship prediction

In a GNN, the hidden representation of a node h
(k+1)
u is an aggregation of a node’s

embedding as well as the message m
(k)
N(u) aggregated from the node’s local neighbours.

These are also based on information aggregated from their respective neighbourhoods,

27

as illustrated in Figure 2.5. Hamilton et al. generalize such a process in [31] as:

h(k+1)
u = UPDATE(k)(h(k)

u ,AGGREGATE(k)(h(k)
v ,∀v ∈ N(u)))

= UPDATE(k)(h(k)
u ,m

(k)
N(u))

(2.27)

Figure 2.5: An illustration of the message passing framework. Left: An example user-

item interaction bipartite graph. Right: A two-layer neural message passing model that

computes the embedding of node A. Diagram adapted from [38]

Message Construction Let hi and mu←i denote the initial feature vector of node i and

the message passed from node i to node u respectively. There are two main message

construction approaches: linear transformation and non-linear transformation. Berg et al.

propose a user rating specific message construction method in [68]:

mu←i,r =
1√

|Ni||Nu|
Wrhi , (2.28)

28

where
1

|Ni||Nu|
is the normalization constant and |Ni| denotes the number of neighbors

of node i. Wr is the rating specific parameter matrix which linearly transforms the initial

embedding.

Comparing to [68], Wang et al. further encode the interaction between nodes in [69]

via the element-wise product within the message:

mu←i =
1√

|Ni||Nu|
(W1hi +W2(ei ⊙ eu)) , (2.29)

where W1,W2 are the trainable weight matrices to encode useful information within the

original feature vector.

Ying et al. apply a dense neural network in [38] to construct the message in an non-

linear way:

mu←i = (Qhi + q) , (2.30)

where Q is a weight matrix shared among all nodes.

He et al. suggest in [14] that the two popular components in GCN: feature transfor-

mation and non-linear activation can be removed since, in the recommendation scenario,

the initial feature vectors are either one-hot IDs or randomly initialized. Sun et al. argue

in [15] that message transformation should be dependent on the type of entity:

mu←i = (Qvhi + qv) (2.31)

mi←u = (Quhu + qu) (2.32)

Besides the messages contained in the bipartite graph, Sun et al. also propose in [15]

that two other types of messages should be passed during the propagation phase: the

collaborative signals among the same type of entity muu = (Muhu), mii = (Mihi), and

the initial node features hi.

Message Aggregation After the message is computed, the next step is to generate an

aggregated neighborhood information m
(k)
N(u) to update each node’s embedding. The su-

29

perscript distinguishes between embeddings at different layers of the GNN. Two types of

methods are commonly used: concatenation and summation. The summation can be fur-

ther categorized into simple element-wise sum and weighted sum. For weighted sum, the

importance of each message is determined by a normalization factor, e.g. , αij =
1√
|Ni||Nu|

,

or αij = 1√
|Ni|

(left normalization). More complex attention mechanisms are also incor-

porated in several proposed systems, e.g., [15, 70]. The simple element-wise sum can be

considered as a special case of weighted sum where the normalization factor is equal to 1.

An activation function and simple transformation are usually applied afterwards to make

the aggregated messages more robust. Considering the embedding after the k-th (k ≥ 1)

propagation layer, h(k)
i , as an example, Berg et al. simply accumulate (either concatenate

or sum depending on the dataset) all the neighborhood messages [68]:

h
(k)
i = ReLU(W · ReLU[ACCUM(

∑
j∈N(i,1)

mi←j,1, . . . ,
∑

j∈N(i,R)

mi←j,R)]) , (2.33)

where W denotes the transformation matrix shared with all nodes.

Compared to [68], Sun et al. and Ying et al. additionally encode the embedding of the

node at the previous layer along with the neighborhood information in [15] and [38] as

follows:

h
(k)
i = ReLU(W · σ[CONCAT(hk−1

i ,
∑

j∈N(i)

mi←j)] + q) . (2.34)

He et al., as described in [14], directly take the weighted sum of the neighborhood

messages without any transformation or non-linear activation:

h
(k)
i =

∑
j∈N(i)

1

|Ni||Nj|
mi←j

=
∑

j∈N(i)

1

|Ni||Nj|
h
(k−1)
j

(2.35)

30

Instead of directly incorporating a node’s embedding from the previous layer in the

accumulation, in [69], Wang et al. first transform it:

h
(k)
i = LeakyReLU(mi←i +

∑
j∈N(i)

mi←j)

= LeakyReLU(W1h
(k−1)
i +

∑
j∈N(i)

mi←j) .

(2.36)

Higher-Order Message Propagation Higher-order messages can be very informative

when it comes to understanding user preference. Such connectivity can be modelled

in a GNN by stacking embedding propagation layers. By stacking L layers, a node is

capable of receiving messages from its L-hop neighbours. Intuitively, embeddings from

different layers capture different information. For example, embeddings from the first

layer smooth users and items with direct interaction. Embeddings on the second layer

enforce smoothness among users and items that have overlapping interactions. Except

for [68], all other papers we have reviewed in this section stack at least two layers to obtain

high-order connectivity semantics. Note that stacking too many layers can be harmful to

the system’s performance. A layer size of two or three is most commonly reported to

have the best performance.

Final Representation Generation The final representation of each node is usually ob-

tained by either using the output directly from the last propagation layer or by combining

outputs from each layer.

In [38], Ying et al. form the final embedding by feeding the last layer output through

a fully connected layer:

h∗i = W2 · ReLU(W1h
(L)
i + q) . (2.37)

On the other hand, Wang et al. propose in [69] to concatenate the representation

learned by different layers to get the final representation:

h∗i = h
(0)
i ∥ . . . ∥ h

(L)
i . (2.38)

31

Moreover, He et al. describe in [14] to generate the final embedding by adding the

embeddings from each layer:

h∗i =
L∑
l=0

αlh
(l)
i , (2.39)

where αl is the importance score of the l-th layer embedding. Specifically, αl = 1
L+1

is

reported to yield the best performance in [14].

In [15], the final representation is derived by combining multiple sources of informa-

tion:

h∗i = ACCUM[h
(L)
i , si, zi] , (2.40)

where si = σ(W · h(0)
i) preserves most of the information contained in the initial embed-

ding and zi contains the collaborative information from the same type of entity.

User-Item Relationship Prediction The inner product between the final representa-

tions of the target user and an item is the most popular method for estimating a user’s

preference on item i:

ŷui = h∗u
Th∗i . (2.41)

Items with the highest (K) preference scores are then recommended.

2.3 Mutual Information

Mutual Information Maximization (MIM) is a key concept closely related to the proposed

method in this thesis and it has been intensively studied in the field of feature selection,

i.e. , representation learning. Therefore, in this section, we first give a brief introduction to

mutual information, as well as the intuition behind MIM. We then proceed to introduce

state-of-the-art methods to estimate mutual information.

32

2.3.1 Introduction

Shannon information To start with, Mutual information (MI) is closely related to the con-

cept of Shannon information. In information theory, the amount of information contained

in an event can be calculated using the occurrence probability of such event, which is

called the Shannon information, aka. ”self-information” of an event. Formally, given a dis-

crete random variable X , with possible outcome events AX = {x1, · · · , xn}, and its corre-

sponding probability p(x) = {p(x1), · · · , p(xn}), Shannon information of an outcome xi is

defined to be [71]:

h(xi) = − log p(xi) (2.42)

when a base-2 logarithm is used, this can simply be interpreted as the number of bits

required to represent this event. Since probability of an event occurs is always less than

or equals to 1, p(xi) ≤ 1, h(x) is always positive or zero.

entropy Another important concept used in the definition of mutual information is

entropy. Entropy compute the average amount of Shannon information within X , and

can be also interpreted as the uncertainty of X , denoted as H(X). Its definition is given

as [71] :

H(X) = −
n∑

i=1

p(xi) log p(xi) (2.43)

where the sum is applied over X’s possibility space.

Conditional entropy Conditional entropy quantifies the amount of information needed

to describe an event given the information of another event. Given two discrete random

variables X and Y , the entropy of X conditioned on Y is denoted as H(X|Y) and can be

computed as:

H(X|Y) = −
∑

x∈AX ,y∈AY

p(x, y) log
p(x, y)

p(x)
(2.44)

where AX , AY are the set of possible events of X and Y.

Kullback-Leibler (KL-) divergence Also known as the Relative entropy, the KL-divergence,

DKL, is a metric measuring the discrepancy between two probability distributions. Specif-

33

ically, given two probability distributions P and Q defined on a probability space Ω, and

know that P is discrete with respect to Q, the KL-divergence between the two distribu-

tions P and Q can be defined as:

DKL(P ||Q) :=
∑
x∈Ω

p(x) log(
p(x)

Q(x)
) = EP [log

p(x)

Q(x)
] , (2.45)

where EP [·] is the expectation with respect to P . A KL-divergence of 0 indicates that the

given pair of distributions share the same amount of information, i.e. P = Q. Also note

that KL-divergence is an asymmetric metric, interchanging P and Q in general gives a dif-

ferent result: DKL(P ||Q) ̸= DKL(Q||P). Therefore, although KL-divergence is sometimes

called the ” KL-distance”, it is not strictly a distance.

Mutual Information In the case when we care more than just the information con-

tained in a single variable but also the amount of shared information between two ran-

dom variables, mutual information (MI) comes in handy. MI measures how much un-

certainty about a random variable is reduced, given knowledge about the other variable.

Formally, let X and Y be two random variables defined in the same space Ω ∈ Rd, MI

between X and Y , I(X;Y), can then be defined as [72]:

I(X;Y) := H(X)−H(X|Y) (2.46)

I(X;Y) can also be interpreted as KL-divergence between the joint distribution, p(x, y),

and the product of the marginal distributions, p(x)p(y), considering x ∈ X, y ∈ Y are the

samples from each random variables. Let p(x|y) denote the conditional distribution of x

given y. Mutual information between x and y is:

I(x; y) = DKL(p(x, y)||p(x)p(y))

=
∑
x∈X

p(x, y) log
p(x|y)
p(x)

(2.47)

34

From the probability theory, we know that if two random variables are indepen-

dent, then PXY = PXPY . Therefore, if two random variables are independent, the KL-

divergence between their joint and their product of the marginals is zero [72], i.e. mutual

information between these two variables is zero.

Mutual Information Maximization When applied in representation learning, the in-

tuition behind maximizing mutual information (MIM) is clear: given a pair of encoded

representations, if their mutual information is maximized, there is then a guarantee on

the amount of shared information being encoded in both representations. Depending on

the final goal, this maximization can be done over representations extracted from differ-

ent layers of the same neural network [22], or output of different networks as long as it is

describing the same object [21].

2.3.2 Mutual Information Estimation

Unfortunately, MI estimation in high-dimensional spaces is intractable [73]. Therefore,

one often resorts to maximizing a tractable lower bound of the mutual information es-

timator in practice. Three estimators are commonly used [21, 22, 73, 74]: the Donsker-

Varadhan (DV) estimator [75], the Jensen-Shannon Divergence (JSD) estimator [76], and

the Information Noise Contrastive Estimator (InfoNCE) [77].

We first outline the general setting and notations for maximizing mutual information

between two representations. Let x and y be the target representation vectors; we aim

to maximize the mutual information between them. p(x), p(y) and p(x,y) are then the

corresponding marginal and joint distributions. p(x|y) is the conditional distribution of x

given y.

The Donsker-Varadhan Estimator [75]: This estimator follows a variational formula-

tion named the Donsker-Varadhan(DV) representation which provides a dual representation

of the KL-divergence as a supremum over a set of functions. Formally, the Donsker-

35

Varadhan (DV) representation of the KL-divergence is defined as follows:

DKL(p(x)||p(y)) = SUP
T :Ω→R

Ep(x)[T]− logEp(y)[e
T] , (2.48)

where the supremum is taken over all functions T : Ω → R such that the two expectations

are finite. A straightforward consequence of this dual representation is that a lower bound

of the KL-divergence can be derived:

DKL(p(x)||p(y)) ≥ Ep(x)[T]− logEp(y)[e
T] . (2.49)

From (2.47) and (2.49), the lower bound on the MI between x and y, obtained from the

DV representation, is:

I(x;y) := DKL((p(x,y)||p(x)p(y))

≥ I(x;y)DV = Ep(x,y)[T (x,y)]− log(Ep(x)p(y)[e
T (x,y)]) .

(2.50)

The Jensen-Shannon Estimator [76]: An alternative approach is to estimate MI based

on the Jensen-Shannon divergence (JSD), which is a symmetrized and smoothed version

of the KL-divergence. Formally, the JSD between two distributions p(x), q(x) is defined

as:

DJSD(p(x)||p(y)) =
1

2
DKL(p(x)||m(x,y)) +

1

2
DKL(p(y)||m(x,y)) (2.51)

where m(x,y) = 1
2
(p(x) + p(y)). In [76], Novozin et al. formulated a MI estimator based

on the JSD:

I(x;y) ≥ Ep(x,y)[−sp(−T (x,y))]− Ep(x)p(y)[sp(T (x,y))] , (2.52)

where sp(x) = log(1 + ex) is the soft-plus function. In [22], Hjelm et al. show that the

JSD between the joint distribution and the product of the marginals has a monotonic

relationship with the KL-divergence. The distributions with the highest MI also have the

highest JSD.

36

The InfoNCE Estimator [78] InfoNCE is a contrastive loss function used for self-

supervised learning. NCE is the initialization of Noise Contrastive Estimation [76]. NCE

was first used as a lower bound of MI in [78]. The basic idea of InfoNCE is to use the

mutual information between a pair of representations (e.g. , x and y) as the training signal

and maximize this MI to achieve the representation learning objective. Since we can not

directly control the joint distribution p(x,y), the objective is to maximize the ratio:

f(x, y) ∝ p(x|y)
p(x)

, (2.53)

where ∝ (proportional to) is used since the ratio is an unbounded value. In [78], this ratio

is approximated by the following function:

f(x,y) = exp(T (x, y)) , (2.54)

where T (x, y) : Ω → R is a suitable function. For example, we can set T (x, y) = xTWy,

with W being a trainable transformation matrix. The InfoNCE loss is then defined as:

I(x,y)(NCE) = Ep(x)[log
f(x,y)∑
x̄ f(x̄,y)

]

= Ep(x)[T (x, y)− Ep(x̄)[log
∑
x̄

eT (x̄,y)]] ,
(2.55)

where x̄ is a negative sample drawn from the same space as x. For example, in the image

classification task, if x is a representation of a cat image, then a possible negative sample

x̄ can be the representation of an image from a different class (e.g. dog).

From the results reported in [22], the JSD estimator is found to be the most stable,

while the InfoNCE estimator can potentially provide a better outcome if many negative

samples are provided. However, the performance difference between these two estima-

tors becomes smaller in large datasets. Overall, both the JSD and InfoNCE estimators can

be used when computing the precise value of the mutual information is not the objective.

37

2.3.3 Mutual Information Maximization Solutions in Representation

Learning

In the past five years, mutual information maximization has been established as one of

the state-of-the-art strategies for representation learning in multiple domains, including

computer vision and recommender systems. These methods usually maximize the mu-

tual information between pairs of embeddings. The pair can consist of embeddings ex-

tracted from different layers of a neural network. Alternatively, the pair can comprise one

real and one corrupted embeddings. Another option is for the embeddings to be derived

from the same context but with different views.

Formally, given an object X and its two different views X(1), X(2), the objective can be

expressed as follows:

argmax
g1,g2

Î(g1(X
(1)), g2(X

(2))) , (2.56)

where Î(·) is a sample-based MI estimator, and g1, g2 are the encoders used to extract

features from the specified perspective.

In the case when the objective is to maximize the MI instead of knowing its precise

value [21–23, 79], a JSD-based estimator can be used which may offer some favourable

trade-off.

In the application of image classification, the basic version of [22] specifically sets X(1)

to be the entire image, X(2) to be an extracted image patch, and g1 and g2 to be the outputs

from different layers of the same convolutional network. The objective can thus be inter-

preted as maximizing the mutual information between local (patch) features and global

(entire image) features. Following a similar setup, [79] enhances the method of [22] by

using different augmentations of the same image as X(1), X(2). In a further extension, [78]

passes a sequence of image patches with a fixed order to an encoder and takes the ag-

gregated representations from the first t patches as X(1) and the representation from the

t+ k-th patch as X(2). This leads to a location-sensitive prediction. In [80], Tian et al. gen-

38

eralize and extend [78] to a multi-view setting (e.g. , multiple image channels) where [78]

can be considered as a special case with only two views.

Mutual information also proves useful when assessing the correlation between differ-

ent views of data in the recommender system setting. Zhou et al. propose a pre-training

method in [21] for sequential recommendation in which mutual information is maxi-

mized between two views of the item, one being derived from the item attributes and

one from the sequence of items. Sankar et al. present a model in [81] for group recom-

mendation where MI is measured between group members and the group. The estimated

MI serves as the weight to control the contribution of a user’s preference to the group

preference. In [82], Cao et al. argue that existing bipartite graph representation learning

methods mainly focus on modelling local structural properties and ignore the importance

of encoding global properties. To alleviate this issue, the authors propose to generate

global views of the graph by aggregating embeddings of homogeneous nodes, i.e. , the

user nodes and item nodes. An InfoMax-based loss function [22] is to maximize the mu-

tual information between the global view and the local view which is the representation

generated by aggregating information from k-hops neighbours.

2.4 Multi-View Representation Learning

The top-K recommendation problems focus on analyzing user preferences hidden in in-

teraction history, explicit feedback, user profiles, and item attributes. These data can be

considered as multiple distinct views with complementary information. Intuitively, com-

bining information from these views in an effective manner should improve the quality of

the learned representations for the target objects, which is crucial to system performance.

Therefore, it is natural to organize input data into multiple views and apply multi-view

representation learning techniques to improve the overall performance. In fact, with the

increasing availability of multi-modal data collected from different sources, multi-view

39

representation learning has been extensively studied for a variety of machine learning

applications, including in the recommender system domain.

2.4.1 Preliminaries

In general, multi-view representation learning aims to learn from data from distinct views

which do not share a common feature space. A modality or a view is defined as data

coming from heterogeneous sources or captured by different techniques. For example, for

a piece of music, audio signals, lyrics and other side information such as the performer,

the producer etc, are considered three views or three modalities. These multi-view data

usually have different statistical properties which make it difficult to incorporate all of

the information in a unified framework.

Canonical Correlation Analysis (CCA) One of the earliest techniques that studies

relationships between two views is CCA, first introduced in [83]. Given two views of

the data X = X, . . . ,xn, Y = y1, . . . ,yn, CCA strives to find two linear transformations

WX, WY such that the correlations between the corresponding transformed variables are

maximized. The correlation coefficient is defined as:

ρ = corr(WX
TX,WY

TY) ,

=
WX

TCXYWY√
(WX

TCXXWX)(WY
TCYYWY)

,
(2.57)

where CXY denotes the covariance matrix defined by:

CXY =
1

n

n∑
i=1

(xi − µx)(yi − µy)
T . (2.58)

Here µx = 1
n

∑n
i=1 xi, µy = 1

n

∑n
i=1 yi are the means of the two views, respectively. Despite

its great success, the CCA method does not take into consideration the nonlinearities of

multi-view data, i.e. it can not model the high order association among the multi-view

data.

40

Inspired by the recent progress in deep neural network techniques, numerous works

have proposed extensions of CCA [84], and endeavoured to define better association

methods beyond CCA [85]. In [86], Li et al. classify existing methods into two categories:

multi-view representation alignment and multi-view representation fusion. In the rest of

this section, we briefly introduce these two categories and review a collection of applica-

tions in the recommender system setting.

2.4.2 Multi-View Representation Fusion

The multi-view representation learning models presented in this section are mainly based

on the complementary principle. This principle states that there exists some view-exclusive

knowledge underlying multiple views which can be exploited to improve the representa-

tion quality [87]. These methods aim to fuse representations learned from separate views

into a single compact vector. Suppose we have two views X and Y. The objective is to

find a compact representation h such that complementary knowledge in multiple views

is fully captured [86]. We define

h = ϕ(x,y) , (2.59)

where ϕ is the feature fusion method. Taking two-view fusion for example, suppose that

x and y are the two mid-level features learned from views X and Y, respectively. Three

simple yet widely used fusion operations are: taking the maximum value (i.e. , h =

max{x,y}), calculating the average (i.e. , h = 1
2
(x + y)) and forming the concatenation

(i.e. , h = [x;y]).

In [88], Zhang et al. construct three views based on heterogeneous information from

three sources: textual review, visual image, and numerical rating. The user and item rep-

resentations obtained from each view are concatenated and a pair-wise contrastive rank-

ing loss is applied on the merged representations to train the model. Guan et al. apply an

additional transformation layer in [89] on the concatenated representation to reduce its

dimension. To reduce the impact of user bias, a user-specific trainable vector is also con-

41

catenated with the transformed content representation to form the final comprehensive

item representation. In [90], Liang et al. argue that the aforementioned fusion methods

have neglected the fact that some views may contain more information than others. The

authors propose a solution by performing weighted summation over the views, where the

attention scores are computed by passing the summation of multi-view features through

an MLP.

2.4.3 Multi-View Representation Alignment

In contrast to multi-view representation fusion methods, multi-view representation align-

ment methods follow the consensus principle [87] and perform alignment between cor-

responding representations learned from each view such that maximum agreement is

achieved on distinct views. Given two views X and Y of the dataset, and let xi, yi repre-

sent the corresponding pair of representations of an object i extracted from the two views.

The general goal can then be formulated as:

argmin
n∑

i=1

M(xi,yi) , (2.60)

where M(·) denotes the chosen metric measuring the distance (or dissimilarity) between

the given pair of inputs. For example, the aforementioned CCA method chooses M(·) to

be the correlation measurement. Li et al. define a distance-based metric involving trans-

formation matrices in [91]. The alignment method aims to find linear transformation ma-

trices Wx, Wy such that the distance between the two representations, after transforming

to the same space, is minimized. The dissimilarity metric is:

M(xi,yi) = ||xi
TWx − yi

TWy||22 (2.61)

42

From the multi-view representation learning perspective, the major difference across

distinct methods are the view construction methods and their choice of the relevance

measurement metric. Common choices are cosine similarity, Euclidean distance, and

correlation-based metrics such as MI. In particular, Elkahky et al. introduce in [92] a

content-based recommender system in the web search scenario with one user view and

three item views. The user view contains a collection of user features generated from

users’ search queries and clicked URLs. Each of the three item views has features of apps,

news, movies/TVs that the users have viewed/interacted with, respectively. A user-item

view pair is then matched through the Microsoft user IDs to leverage the information

across domains and achieve a better user representation. The goal is to maximize the

overall cosine similarity between features from the user view and each of the item views.

One challenge of multi-view representation learning is that one of the views may have

low-quality data. In [93], Cai et al. develop an active learning algorithm to progressively

train a mapping function that transforms the rich visual features of each video to the more

informative but often missing text features. The transformed text feature is then used to

predict the user preference score and the objective is to minimize the difference between

the score computed from the transformed text feature and the original text feature. Fur-

thermore, in [21], Zhou et al. quantify the correlations among different views by mutual

information.

2.5 Summary

In this chapter, a thorough background review is presented to cover the four topics that

are most relevant to this thesis. As described later in Chapter 5, our proposed method

is a recommender system solution that incorporates item side information following a

multi-view representation learning framework. The collaborative signal between users

and items is explored using a state-of-the-art graph neural network method and mutual

information is used as an objective during training. Therefore, each of the four sections

43

in this chapter provides fundamental material corresponding to one of the keywords as-

sociated with the proposed method. In the following chapter, we review how side infor-

mation is injected into existing recommender system algorithms to improve recommen-

dation accuracy.

44

Chapter 3

Related Work

The sparsity of datasets has been a major challenge for real-world recommender systems.

In this chapter, we review recent methods which strive to alleviate this issue by using

side information. More specifically, these methods aim to encode side information into

the users’ and items’ embeddings. There are many solutions to incorporate side infor-

mation. These solutions vary in how they represent side information, how they model

feature interactions, and how they incorporate the side information in the user/item rep-

resentations.

We first provide a detailed description of algorithms that are highly related to this

thesis. These are used as baselines in our subsequent experiments. We then discuss how

these methods design the interactions between side information and items.

The notations used throughout this chapter are listed in Table 3.1.

45

Table 3.1: Notation Used in Chapter.3

Notation Description

U the set of users

I the set of items

C the set of attributes

U ∈ R|U|×d matrix of latent user representations

I ∈ R|I|×d matrix of latent item representations

C ∈ R|C|×d matrix of latent attribute representations

R ∈ R|U|×|I| binary user item interaction matrix

S ∈ R|I|×|C| binary item attribute indicator matrix 1

V ∈ R|I|×d the aggregated attribute embedding matrix

eu latent representation of user u; the u-th row of U

ei latent representation of item i; the i-th row of I

ec latent representation of attribute c; the c-th row of C

1 Each row is a multi-hot vector with 1 indicating the attribute an item is associated with, and 0 otherwise.

3.1 Baseline Models

MultiGraph Convolution Collaborative Filtering (MGCCF) [15]: MGCCF is a state-of-

the-art model that explores the user-item correlations through graphs. Overall, this model

contains three sub-graphs: a user-item (UI) bipartite graph representing user-item inter-

actions, a user-user and an item-item graph capturing proximity among users and items.

The overall architecture is illustrated in Fig. 3.1.

46

Σ

User embedding update Item embedding update

!#$

AG"#$

!#%

AG"#%

##$
ℎ#$

##% !&$

AG"&$

!&%

AG"&%

#&$
ℎ&$

#&%ℎ# %# &#

Information
Fusion

'#∗

&& %& ℎ&

Information
Fusion

'&∗
'#∗ ('&∗

Pairwise BPR loss

'#
)#

'&
)&

Σ

user graph item graph

: concatenation operation
: user node
: item node

Bipar-GCN

Skip-
connection

MGE
(Multi-Graph
Encoding)

Figure 3.1: Illustration of the MGCCF framework, diagram adapted from [15].

The most basic graph is the UI bipartite graph. As introduced in Section 2.1, there

are two types of nodes in a bipartite graph (in this case user nodes and item nodes), and

an edge can only exist between nodes of different types. The UI graph contains an edge

between a user node and an item node if there was an interaction between them. To

explore the UI bipartite graph, Sun et al. propose a Bipartite Graph Convolutional Neural

Network (Bipar-GCN) that iteratively aggregates the K-hop neighbourhood information

of a user or item node through graph convolution [15]. Specifically, given the initial user

embedding eu (or item embedding ei) extracted from the maintained user embedding

matrix U (or an item embedding matrix I), the following information propagation rule is

applied:

hk
u = σ(Wk

u · [hk−1
u ;hk−1

N(u)]),h
0
u = eu , (3.1)

where hk
u denotes the k-th layer embedding of the target user u, [;] represents the con-

catenation operation, σ(·) is the tanh activation function, Wk
u denotes the transformation

47

weight matrix in k-th layer of the Bipar-GCN, and hk−1
N(u) is the aggregated neighborhood

information matrix of k−1-hop neighbors. To ensure the neighborhood information ag-

gregation process is permutation invariant, an element-wise weighted mean aggregator

is applied:

hk−1
N(u) = σ(MEAN(hk−1

i ·Qk
u, i ∈ N(u))) , (3.2)

where MEAN denotes the element-wise mean operation and Qk
u is the (user) aggrega-

tor weight matrix at the k−th layer. Note that both Wk
u and Qk

u in the Bipar-GCN are

shared across all user nodes at layer k. Analogously, item embeddings can be generated

following the same propagation and aggregation rule.

To fully investigate the given user-item interactions and to capture information left

out by the Bipar-GCN, Sun et al. propose to construct a user-user graph and an item-item

graph from the UI interaction history and explore them using the proposed Multi-Graph

Encoding (MGE) layer. In particular, the user-user graph and the item-item graph are

first constructed by computing pairwise cosine similarities on the rows or columns of

the UI interaction matrix, R. For each node, the 10 most similar users or items are then

considered as neighbours. The neighbourhood information is then aggregated through a

simple graph convolution layer. For a target user u, the embedding generated from the

MGE layer is computed by aggregating information from the 1-hop neighbours through

a weighted sum:

zu = σ(
∑
j

∈ N ′(u)ej ·Mu) . (3.3)

Here N ′(u) denotes the 1-hop neighbours of user u, ej is the initial user embedding from

the maintained user embedding matrix U, and Mu is the learnable weight matrix shared

across all users. Item embeddings can be generated from the item-item graph through

MGE following the same propagation and aggregation rule.

Moreover, Sun et al. argue that information contained in the initial user and item em-

beddings are diluted during propagation. To alleviate this issue, a skip-connection mech-

48

anism is added which generates another set of user (or item embeddings) by passing the

initial embedding eu (or ei) through a single fully-connected layer.

The final embedding is generated by fusing the corresponding embeddings from these

three components through element-wise sum, concatenation or an attention-based sum-

mation operation, out of which the element-wise sum is reported to achieve the best per-

formance in [15].

This model exploits multiple graphs to explicitly explore user-item, user-user and

item-item relationships and can be easily adapted to incorporate item attributes by chang-

ing the item-item graph construction method. For example, instead of computing cosine

similarity on the columns of the UI interaction matrix, we can compute cosine similarity

on the rows of the item-attribute indicator matrix S. Attribute information can thus be

naturally injected into the system, i.e. , neighbours in the item-item graph are now items

that share similar attributes.

KGAT [1]: Instead of explicitly constructing multiple graphs to represent different

relations between entities (users, items, attributes), another strategy is to encode all the

information into a unified graph. In [1], Wang et al. proposed to construct a directed

graph with labelled edges where each user, item, and attribute is modelled as an entity

node and an edge connecting a user and an item represents an existing interaction while

an edge between an item and an attribute indicates that the attribute is related to the item.

Different relations, such as ”directed by”, ”genre”, ”acted by”, can be identified through

the label given to the edge. Let U , I, C denote the set of users, the set of items and the

set of attributes, respectively. The collaborative knowledge graph (CKG) G can then be

represented as G = {(h, r, t)|(h, t) ∈ E , r ∈ R′} where E = U ∪ I ∪ C is the set of all

entities and R′ is the unified set of all the relations, including user-item interactions and

item-attribute associations. The overall structure of KGAT is given in Figure.3.2

First, a CKG embedding layer is applied to specifically train the node embeddings, U,

I and C. Let eh, et denote the head and tail embeddings of a given triplet (h, r, t). The

aim of the embedding layer is to optimize the node embeddings such that the translation

49

!! !" !# !$!%

"! "$ "% ""

!#!
(%)

'! '$ '%

!("
(%)

)**'+*",' -./'00"+1
2345616*"4+

= 3

= 2

= 1

)**'+*",' -./'00"+1
2345616*"4+

= 3

= 2

= 1

(!!
(#)

(!!
(%)

(!!
(&)

(!!
(')

(("
(#)

(("
(%)

(("
(&)

(("
(')

Concatenate

Concatenate

!"!!""

#!"
(#)

LeakyReLU LeakyReLU

((!
()*&) (+!

()*&) (!#
()*&)

… …
"7 !8 #9
:("%, 3%, '!)

:("%, −3!, !$)

$%(#) $&(#)

((!
()*&) (+!

()*&) (!#
()*&)

… …
"7 !8 #9

:("%, 3%, '!)

:("%, −3!, !$)

CKG Embedding Layer Attentive Embedding Propagation Layers Prediction Layer Attentive Embedding Propagation Layer

Figure 3.2: Illustration of the KGAT framework (diagram adapted from [1]). Left: The

overall architecture of KGAT; Right: Detailed illustration of the attentive embedding

propagation layer.

relation in the graph is preserved: erh+er ≈ ert , where erh = Wreh, ert = Wret are the head

and tail embeddings projected into the relation r’s space and Wr is the projection matrix

for relation r. Following this translation principle, the plausibility score for each triplet

(h, r, t) can be computed as:

g(h, r, t) = ||Wreh + er −Wret||22 . (3.4)

The first objective of KGAT is then to minimize the plausibility scores for triplets that

truly exist in G while maximizing the scores for the “broken” ones that do not exist in G.

The loss is thus:

LKG =
∑

(h,r,t,t′)∈T

− lnσ(g(h, r, t′)− g(h, r, t)) , (3.5)

50

where T = {(h, r, t, t′)|(h, r, t) ∈ G, (h, r, t′) /∈ G}. Each broken triplet is constructed by

replacing the tail entity in an existing triplet (h, r, t) with t′ sampled randomly from the

entity set.

The first objective ensures that the direct relations in the knowledge graph are encoded

in the node embeddings. A natural goal that comes next is to propagate information in

each node along the edges. KGAT achieves this through the attentive embedding propagation

layers. Specifically, KGAT employs a new aggregator, f , to explicitly explore two types of

interactions between each node and its neighbourhood representations. The aggregator

is:

f(eh, eN(h)) = LeakyReLU(W1(eh + eN(h))) + LeakyReLU(W2(eh ⊙ eN(h))) , (3.6)

where eh and eN(h) represent the embedding and the aggregated neighborhood embed-

ding of the target entity h respectively. W1 and W2 are trainable weight matrices and

⊙ denotes the element-wise product operation. The neighborhood message of node h,

eN(h), is computed through a weighted summation of its neighbors’ embeddings, where

the weight is dependent on the distance between the two nodes in the relation space, i.e.

, closer entities contribute more in the neighborhood aggregation stage.

Multiple propagation layers can be stacked to explore higher-order connectivity infor-

mation. For example, if the target entity is a user node of user u, then its representation

generated from the l−th step, e(l)h , is represented as:

e
(l)
h = f(e

(l−1)
h , eN(h)(l−1)), e

(0)
h = eu . (3.7)

Finally, representations from all L layers are concatenated to formulate the final rep-

resentation of a target node, denoted as eu∗ for user node u and ei∗ for item node i. The

preference score of user u for item i is computed through an inner product:

y(u, i) = eu ∗ ·ei ∗ . (3.8)

51

To train this system such that a higher preference score is assigned to an observed

user-item pair, the BPR [57] loss is used, which leads to KGAT’s second objective:

LCF =
∑

(u,i,j)∈O

− log σ(y(u, i)− y(u, j)) , (3.9)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} is the training set, with R+ denoting the

positive (observed) interactions, and R− denoting the sampled negative (unobserved)

interactions.

Combining the aforementioned two objectives, the final objective of KGAT is:

L = LKG + LCF + λ||Θ||22 (3.10)

NFM [2]: In neural factorization machines (NFMs), the user interaction history and

item knowledge are encoded in a sparse feature matrix. Given the user interaction his-

tory consisting of a total of m interaction records from |U | users over |I| items, and the

item knowledge indicating which attributes each item is associated with, for |I| items

over |A| attributes, the feature matrix is defined as: X ∈ Rm×n where n = |U | + |I| + |A|.

Each row, x, in the feature matrix is a sparse binary vector representing an interaction

record, with xi = 1 indicating the existence of the i-th feature. The feature set V =

{e1u, · · · , e|U |u︸ ︷︷ ︸
user features

, e1i , · · · , e
|I|
i︸ ︷︷ ︸

item features

, e1a, · · · , e|A|a︸ ︷︷ ︸
attribute features

} is a combination of all the features associated with

users, items and attributes. Given a sparse vector x = [x1, · · · , xn] as input, a set of fea-

ture embedding vectors can then be constructed as Vx = {x1v1, · · · , xnvn}. Based on Vx,

the NFM outputs a prediction score yNFM(x) and the goal is to train NFM such that the

prediction score is high if x ∈ X. In [2], NFM’s predictive model is formulated as:

ŷNFM(x) = w0 +
n∑
1

wixi + hTσL(WL(· · ·σ1(W1fBI(Vx) + b1) · · ·) + bL) , (3.11)

52

where W = {w0, · · · , wn} is a set of learnable weights. In particular, the first term is the

global bias and the second term models the weight of each feature. h in the third term are

the neuron weights of the prediction layer and {W1,b1, · · · ,WL,bL} are the weights and

biases of the hidden layers. The bi-interaction layer, fBI, is a key contribution of NFM. It

was introduced to model the second order feature interactions, including attribute-item

interactions. Specifically, the bi-interaction layer is defined as follows:

fBI(Vx) =
n∑

i=1

n∑
j=i+1

xivi ⊙ xjvj , (3.12)

where ⊙ is the element-wise product operation.

The objective of NFM when used in the ranking task is:

L = − lnσ(ŷNFM(x̄)− ŷNFM(x)) = − ln
1

1 + eŷNFM(x)−ŷNFM(x̄)
(3.13)

cVAE [94]: As both user ratings and item attributes are associated with items, Chen

et al. propose that a variational autoencoder (VAE) can be trained to recover both the

interaction matrix R and the item-attribute indicator matrix S collectively. The approach

is thus named CVAE. In short, a variational autoencoder is just an autoencoder, make up

of both an encoder and a decoder whose objective is to minimize the reconstruction error

between the encoded-decoded data and the initial data, but with some regularisation on

the latent space to avoid overfitting. Therefore, instead of encoding an input as a single

representation vector, the goal is now to encode it as a distribution over the latent space.

Specifically, the encoder in VAE is referred to as the inference network and the decoder is

referred to as the generation network.

Let fϕ and fθ be the inference network and the generation network of a VAE parametrized

by ϕ and θ, respectively. The goal of CVAE is to recover R and S one-by-one through the

same VAE network:
M ∼ fϕ(R),R ∼ fϕ(M),

Z ∼ fϕ(S),S ∼ fϕ(Z),
(3.14)

53

where M, Z are the distributions over the latent space of R and S generated by the infer-

ence network. The objective is to train the inference network such that the distribution

can be approximated.

In order to do so, Chen et al. first assume that the latent variables in M, Z, denoted as

m and z, follow a Gaussian distribution. Next, the interaction history of user j over all

items is assumed to follow a Bernoulli distribution:

rj|mj ∼ Bernoulli(σ(fθ(mj))) ,

log pθ(rj|mj) =
∑
i∈I

rji log σ(fji) + (1− rji) log(1− σ(fji)) ,
(3.15)

where σ(·) is the sigmoid function, fji denotes the i−th element of vector fθ(mj) and rji

is the interaction history of user j to item i. Note that σ(fji) is within (0, 1).

To distinguish between R and S, for side information, Chen et al. assume the feature

indicator of item j over all attributes follows a Gaussian distribution:

sj|zj ∼ N(fθ(zj), I) ,

log pθ(sj|zj) =
∑
i∈I

−1

2
(sji − fji)

2 ,
(3.16)

where fji denotes the i−th element of vector fθ(sj), and I is the identity matrix.

To generate recommendations for a target user u, a latent variable is first computed as

mj = fϕ(rj). This is then decoded through the inference network as fθ(mj) ∈ RI . Items

are then ranked in descending order of the fθ(mj) values for the recommendation.

To train this network, the cVAE is first pre-trained by feeding it item attributes and

then refined by feeding the user ratings. When item attributes are fed, the objective is to

maximize the log-likelihood:

L =
∑
j∈I

(log pθ(sj|zj)) (3.17)

54

Similarly, when user ratings are fed, the objective then becomes:

L =
∑
j∈U

(log pθ(rj|mj)) (3.18)

In the next section, we provide a discussion of the side information exploration process

in the aforementioned algorithms along with other highly related non-baseline methods

from the perspective of how side information is incorporated into the system.

3.2 Discussion

In this section, we identify three major challenges in side information incorporation and

discuss how each algorithm tackles these challenges one by one.

Side information Representation: The first challenge is to effectively represent the side

information. A simple way is to use an attribute indicator matrix, S, where each row is a

multi-hot vector with 1 indicating an attribute an item is associated with, and 0 otherwise.

Some approaches choose to use the binary indicator matrix S directly [2, 94, 95]. In [96],

Zheng et al. propose to learn a weighted version of S where the contributions from each

feature factor can be varied. However, the nature of S makes it generally sparse. A

more common way to represent side information is to use latent feature representations

[3, 21, 59]. For example, Chen et al. propose to maintain a randomly initialized latent

feature representation matrix C which projects the high-dimensional multi- or one-hot

vectors of item attributes to low-dimensional dense representations [59]. C is then trained

using a top-n recommendation objective in cross-entropy form. In [1], each feature in the

side information is represented as a node in a knowledge graph, and S is used to create

links between these feature nodes and the item nodes. Radford et al. choose to use a

transformer to encode the multiple feature representations into a single vector [3] .

Side Information Interaction: The second challenge in incorporating side information

is to handle the feature interaction. Specifically, for items with more than one category

55

tag, it must be determined how the multiple features can be combined. Early methods

mostly consider linear interactions only. In [96], Zheng et al. sum the weights associated

with each feature. Similarly, Chen et al. propose in [59] to conduct an element-wise sum-

mation over the related feature representations. Recently, some researchers have argued

that there exist higher-order interactions between the features that cannot be captured

by linear operations. In [2], He et al. suggest to replace the inner product with an non-

linear neural network. Specifically, they develop a “bi-interaction” pooling layer which

converts a set of embedding vectors into a single vector by computing an element-wise

product between each pair of user/item/feature representations and summing over the

results. Higher-order interactions can then be achieved by stacking multiple propagation

layers.

Side Information Incorporation: The third challenge is to infuse side information into

user or/and item representations. In some works, researchers simply aggregate the two

representations learned from user ratings/interactions and side information, either by

summation [59, 97] or concatenation [35]. A preference score is then calculated based on

the dot product of the aggregated user and the item embeddings. The preference score

features in the cross-entropy or the pair-wise rank loss for optimization.

However, these types of methods tend to ignore the data heterogeneity between user

ratings and side information. To cater for the heterogeneity of ratings and side infor-

mation, Chen et al. connect side information with the interaction data by learning both

representations using the same neural network [94]. A variational autoencoder (VAE) is

first pretrained to reconstruct the attribute indicator matrix S. The same autoencoder is

then fine-tuned with an objective that focuses on reconstructing the user-item interaction

matrix R.

On the other hand, Chen et al. proposed to alleviate this issue by adding an additional

objective specifically for exploring item-attribute interactions. This objective is based on

the item tagging task [59], which aims to predict correct tags (or attributes) for items.

This is analogous to how traditional recommender systems aim to predict potential items

56

for users. In particular, [59] is trained to compute the probability of each attribute being

associated with an item by passing the attribute representation through a two-layer fully

connected neural network.

The bi-linear layer proposed in [2] takes into account the interactions between users,

items and side information through an element-wise product operation.

Besides the model-based methods, graph-based methods are also gaining increasing

attention. As described in [21], Zhou et al. propose to incorporate a multi-head self-

attention block that takes all the item and item attribute embeddings as input. The block

is designed to extract a selective combination of information from different representa-

tion spaces. In [1], Wang et al. introduce a bi-interaction aggregator to connect each item

and its aggregated attribute information, as reviewed in section 3.1. By considering the

dimension-wise feature interaction between each node embedding and its corresponding

neighbourhood representation, this aggregator can effectively propagate more informa-

tion from similar entities.

3.3 Summary

In this chapter, we presented the works most relevant to the topic of this thesis. We iden-

tified three key stages in side information enhanced recommender systems and discuss

different types of solutions in terms of their design in each stage. From the literature re-

view, we see that state-of-the-art methods usually build upon different frameworks (e.g.

GNN-based, autoencoder-based, matrix factorization-based, etc) to explore the correla-

tion between items and their side information. These various formulations make it diffi-

cult to compare the intrinsic difference in terms of how side information is being absorbed

into the system. Moreover, to the extent of our knowledge, major research focus has been

put on developing more accurate recommender systems based upon existing state-of-

the-art models but little effort has been given to truly understand the side information

57

exploration process hidden within the basic framework. For these reasons, in the next

chapter, we propose a solution to provide a unified description of these methods.

58

Chapter 4

Side Information Enhanced Methods in

A Unified Framework

Over the past decade, an increasing amount of new information beyond implicit user

feedback has become available as a result of the development of data collection tech-

nologies. The information can be categorized into two types: rich side information re-

lated to users and items, and information associated with interactions between users and

items. Incorporating side information in CF algorithms is emerging as a promising di-

rection in recommender system research [13, 20, 21, 94, 95, 98]. In Chapter 3, we provided

a review of a series of key algorithms developed to exploit side information, including

matrix factorization-based methods [2, 99], auto-encoder based approaches [94, 96], and

graph neural network-based algorithms [1, 95]. However, these methods are developed

based on different base models, motivated from different perspectives and usually em-

ploy diverse notations. Therefore, it is difficult to compare the characteristics of existing

successful side information enhanced methods. For example, [94] is developed on top

of an auto-encoder framework, whereas the key components in [1, 95] are graph neural

networks (GNNs). [1] is developed to analyse the user-item-attribute knowledge graph,

whereas [13] is presented from a multi-view perspective. To better analyze and compare

these various side information enhanced approaches, we propose a framework which de-

59

scribes these methods from a unified perspective: the multi-view alignment perspective

and makes it considerably easier to perceive the similarities and differences between the

approaches.

In this chapter, we first present the novel framework named attribute-item alignment

(AIA) developed for item side information enhanced algorithms. Subsequently, we show

how some of the prominent algorithms fit into the introduced framework. Note that

in this chapter, the term “side information” is used to describe side information in gen-

eral, including side information about users and items; “item side information” and “at-

tribute” are used interchangeably to refer to side information describing features of items.

In special cases where information from other sources is used, we specifically identify

the information source.

4.1 Overview of the AIA Framework

Our framework is motivated by the intuition that item side information and UI interac-

tion history can be considered as two views of items that capture different aspects of the

items. The former focuses on describing the items’ attributes while the latter focuses on

how users perceive and interact with the items. If we can learn to encode the comple-

mentary information from the multi-view data in a low-dimensional embedding, then in

principle, the resultant item embeddings should contain more information that is helpful

for downstream recommendation tasks.

Recommender system incorporating item side information can be considered as hav-

ing two blocks in their algorithms: (i) a block for handling user-item interactions, where

in general a user-item preference score is computed and the score for the correct pair is

optimized; (ii) a block for exploring the item-attribute relations. The AIA framework is

designed to analyze the second block.

As illustrated in Figure 4.1, there are primary two key components in the AIA frame-

work:

60

• an association measure function, f : Rd × Rd → R, that measures the association

between an item and its corresponding attribute(s);

• an association loss function, L : R × R → R, that evaluates the quality of the

association function in order to train the model.

Depending on the system design, there can also be an attribute aggregator that is de-

signed to aggregate all of the attributes associated with an item if it has multiple at-

tributes. However, this component is optional. In the rest of this chapter, we explain

each component in detail.

4.1.1 The Association Measure Function

In principle, the association function aims to predict the association score of an attribute-

item pair given an item embedding ei as well as an attribute embedding ec. The goal

is to output a higher score for a “positive” pair, i.e., where the item is indeed related

to the given attribute while doing the opposite for a “negative” pair. For instance, the

association score for the {Dove body wash, Skin Care} pair should be higher than the {Dove

body wash, Makeup Tools} pair.

The association measure function is defined to have the following signature:

s = fθ(i, c) (4.1)

where s is the association score, i is the item and c is the attribute. Depending on the

design of the model, an association function may or may not contain trainable parameters

θ.

4.1.2 The Attribute Aggregator (Optional)

In many cases, an item is related to more than one attribute. Instead of computing as-

sociation score for each attribute-item pair, another option is to pass in a set of related

61

Figure 4.1: Overall structure of the AIA framework. The purple block denotes the AIA

framework and the blue block denotes the regular UI recommendation block. Item em-

beddings are shared in both blocks. First, an attribute aggregator generates the aggre-

gated attribute representation of an item, ev, by aggregating this item’s attributes eic if

required. Next, the item-attribute association function is applied on the item representa-

tion ei and either eic or ev, depending on the system design, to measure the item-attribute

association S. Finally, the association loss function is evaluated to compare S to the score

of an irrelevant item-attribute pair S̄ to train the model.

attributes V = {c1, . . . , ck}, and aggregate them into a single embedding vector, denoted

as ev:

ev = AGGREGATOR({ec, c ∈ V}) (4.2)

The association score is then computed between the item representation and the final

attribute representation:

s = fθ(i,V) . (4.3)

62

4.1.3 The Association Loss Function

The association loss function evaluates the accuracy of the pairwise association score. In-

stead of evaluating the association score computed for a single item-attribute pair (i, k),

(i, k, l) will be considered as training data where k is the true relevant attribute associ-

ated with item i and l is an attribute that is assumed to be not relevant for i. The item

l is sampled from the rest of the attributes excluding the true relevant attributes. Opti-

mization would be performed based on the rank of these item-attribute pairs: (i, k) and

(i, l). Specifically, item i is assumed to be more relevant to k over l. A contrastive loss

is thus used in order to optimize the association measure function in an unsupervised

manner [1, 2, 21]:

L =
∑
(i∈I)

l(s, s̄) (4.4)

where L is the total association loss, and l is the loss function taking in the positive asso-

ciation score, and the negative association score s̄.

4.2 Item side Information Algorithms in AIA Framework

In this section, we present three state-of-the-art side information enhanced recommen-

dation models from distinct backgrounds and explain how they can be expressed in the

AIA framework introduced in Section 4.1. Tables 4.1 and 4.2 provide a summary of the

association measures and association loss functions for the analyzed algorithms.

For each model, we first review the component of the model where the attribute-item

association is considered. Subsequently, we explain how the methodology can be refor-

mulated in order to fit the association-based model in our proposed AIA framework. In

this section, we continue to employ the notation defined in Table 3.1. Model-specific no-

tation is introduced and explained only when it is necessary.

1The global bias w0 and the weight of each entity wj , j ∈ {u, i, C} are omitted for clarity.
2The normalization factor τ is neglected.

63

Table 4.1: A summary of association measures employed in state-of-the-art baseline algo-

rithms. ei and ec denote the latent representations for item i and attribute c, respectively.

Vi = {ec1 , · · · , eck} is the attribute set of item i. eiv =
∑
Vi{ec} represents the aggregated at-

tribute representation for item i. σ(·) is the sigmoid function. FFN(i)(·) is used to denote a

feed forward neural network with i layers where FFN(i)(X) = σ(Wi(· · ·σ(WiX+bi)+b1).

Method Association Measure f(·)

KGAT ||Wrei + er −Wrec||22
NFM1 hT · FFNl(

∑
c∈C eu ⊙ ecc +

∑
c∈C ei ⊙ ecc +

∑
c∈C

∑
h∈C,h̸=c e

c
c ⊙ ehc)

CLIP2 ei · eiv
T

Table 4.2: A summary of association loss functions for state-of-the-art baseline algo-

rithms. si = f(ei,Vi) is the positive association score whereas s̄i = f(ej,Vi),Vj ̸= Vi is

the negative association score.

Method Loss function

KGAT − ln

(
1

1 + esi−s̄i

)
NFM − ln

(
1

1 + esi−s̄i

)
CLIP (−si) + log(

∑
es̄i)

4.2.1 KGAT [1]

In KGAT, the user interaction history and item knowledge are encoded in a unified knowl-

edge graph, which is a directed graph with labelled edges. Specifically, each user, item,

and attribute is modelled as an entity node. An edge connecting a user and an item cap-

tures the interaction between them, and an edge exists between an item and an attribute

if there is a relation between them, such as ”directed by”, ”genre”, ”acted by”, etc.) The

overall loss function of KGAT is composed of three objectives:

L = LKG + LCF + λ||Θ||22 (4.5)

64

where λ is the regularization hyperparameter and Θ represents all trainable parameters

within the model. LCF is the collaborative filtering loss term that aims to train the user

and item embeddings such that the user-item interactions can be reconstructed through

an inner product of the two embeddings. λ||Θ||22 is the regularization term to prevent

over-fitting.

LKG is the objective function used to train knowledge graph node embeddings (user,

item, and attribute nodes) such that neighbourhood relations in the local graph structure

can be reconstructed. To be more specific, a relationship between entities is preserved

by applying the widely used TransR [100] principle, where given embeddings of a head

entity-relation-tail (h,r,t) entity triplet, it assumes the head and tail entities are close with

each other in the specific relation space and are far away from those that do not hold

the same relation. Mathematically, let G be the knowledge graph and (h, r, t) be an exist-

ing entity-relation-entity triplet in G, each associated with an embedding, represented as

eh ∈ Rd, et ∈ Rd, er ∈ Rk, respectively. The TransR principle can then be expressed as:

there exists a transformation matrix of relation r, Wr ∈ Rk×d, such that the transformed

head embedding erh = Wreh and the transformed tail embedding ert = Wret satisfy the

following relation:

erh + er ≈ ert (4.6)

Based on this principle, we can define a plausibility score for each triplet:

g(h, r, t) = ||Wreh + er −Wret||22 (4.7)

To encourage discrimination between the existing triplets and the non-existing ones,

a pairwise ranking loss is used:

LKG =
∑

(h,r,t,t′)∈T

− lnσ(g(h, r, t′)− g(h, r, t)) (4.8)

65

where T = {(h, r, t, t′)|(h, r, t) ∈ G, (h, r, t′) /∈ G}. and (h, r, t′) represents a broken triplet

which does not exist in the knowledge graph (i.e., there is no edge between h and t′). Each

broken triplet is constructed by replacing the tail entity in an existing triplet (h, r, t) with

t′ sampled randomly from the entity set.

The association measure function for KGAT: As introduced in Section 4.1, an association

measure function takes in an attribute-item pair and outputs their association score. This

is exactly what is defined in Equation (4.7), with head and tail entities limited to items and

attributes. Therefore, viewed from the AIA framework, the association measure function

of KGAT can be expressed as:

s(i, c) = ||Wrei + er −Wrec||22 (4.9)

where er in our scenario represents the embedding of the relation attributeOf.

The association loss function for KGAT: The plausibility score g(h, r, t) is equivalent to the

association score in our framework. The association loss function can thus be expressed

as:

l = − lnσ(s̄− s) = − ln

(
1

1 + es−s̄

)
(4.10)

where σ(·) is the sigmoid function.

4.2.2 Neural Factorization Machines (NFMs) [2]

As introduced in section 3.1, NFM encoded the given interaction history and item side

information in a sparse feature matrix where each row is a binary vector representing an

interaction record and the user, item, attribute(s) this record is related to. The attribute-

item interactions are then explored through an element-wise product.

The association measure function of NFM: In our framework, given an interaction record

of user u interacting with an item i with attributes C = {c1, · · · , ck}, the feature em-

bedding set can be expressed as: Vx = {eu, ei, e1c , ekc}. Therefore, the association score

can be considered as the prediction score defined in NFM, with the exception that this

66

association score not only measures association between attributes and items, but also

association between users and attributes, and users and items:

s(u, i, C) = w0+
∑

j∈{u,i,C}

wj +hT ·FFNl(
∑
c∈C

eu⊙ecc+
∑
c∈C

ei⊙ecc+
∑
c∈C

∑
h∈C,h̸=c

ecc⊙ehc) (4.11)

The association loss function of NFM: ŷNFM(x) is equivalent to the association score in our

framework. The association loss function can thus be expressed as:

l = − lnσ(s̄− s) = − ln(
1

1 + es−s̄
) (4.12)

where σ(·) is the sigmoid function.

4.2.3 CLIP [3]

Originally proposed as a solution to the image classification problem, the idea of CLIP is

to enhance the image classification accuracy with the help of a text description of an im-

age. Assuming we are given a collection of image examples {i1, i2, · · · , iN}, and their asso-

ciated text descriptions {t1, t2, · · · , tN}, these two sources of information are first encoded

into feature vectors through an image encoder and a text encoder, respectively, leading

to a batch of (image, text) representation pairs {(i1, t1), · · · , (iN , tN)}, where ij ∈ Rdi ,

tj ∈ Rdt . These pairs of representations are then transformed into a latent space:

ije = ij ·Wi (4.13)

tje = tj ·Wt , (4.14)

where ije, tje are the projected image and text representations in the latent space, and Wi ∈

Rdi,de , Wt ∈ Rdt,de are the learnable transformation matrices. A pairwise cosine similarity

67

score can then be calculated as follows:

sj = ije · tje
T · et , (4.15)

where t is a learnable temperature parameter that is used to control the scale of the simi-

larity score. In order to train the image and the text encoder so that the cosine similarity

of the matching (image, text) pair is larger than the similarity of the incorrect pairs in the

multi-modal space, a cross-entropy loss is applied:

L = (−sj) + log(
N∑

l=1,l ̸=j

esl) (4.16)

Inspired by how CLIP improves the image representation learning through learning

from its text description, we3 adapt this model into a recommendation scenario. To be

more specific, we modify CLIP to address the top-K recommendation problem assum-

ing that the user-item interaction history and the item category information are provided.

The motivation behind this is that we can consider the (item, item attributes) relation to

be equivalent to the (image, text description) relation in the original CLIP model. There-

fore, a similar objective can be defined following the setup in CLIP to improve the item

representation quality through learning from its corresponding attributes. The adapted

model is depicted in Figure.4.2.

The architecture consists of two primary components. First, a user-item interaction

bipartite graph G is constructed and the user-item correlation is explored through the

state-of-the-art LightGCN [14] approach. Second, we extract the item node embedding

from the bipartite graph. A category embedding matrix, Ec, is also learned; this maps

each item attribute to an embedding vector. Following the setup in CLIP, these two em-

beddings are jointly trained with the objective to correctly pair an attribute with an item.

3Machine learning researcher from Huawei, Yingxue Zhang, first suggested adapting CLIP to be used in
the recommendation scenario. McGill University Ph.D. student, Haolun Wu, conducted the initial experi-
ments to prove the effectiveness of this idea. I implemented the same model independently and tested its
performance on another six different datasets.

68

Figure 4.2: The overall architecture of CLIP adapted in a recommendation scenario. While

a standard collaborative filtering model (LightGCN [14]) is applied on the UI-interaction

bipartite graph to generate user and item embeddings, attribute embeddings eci and item

embeddings eij are also jointly trained to predict the correct pairing of a batch of (item,

attribute) training examples.

A detailed introduction of the LightGCN network is provided in Section 5.2.2. It gen-

erates user and item embeddings by processing the user-item bipartite graph. Specifically,

a BPR [57] loss is used to train the LightGCN, which can be expressed as follows:

LLightGCN = −
∑

(u,i,j)∈O

lnσ(ŷui − ŷuj) + λ||E||2 (4.17)

where ŷui = eu · ei is the predicted preference score of a given (user, item) pair, O =

{(u, i, j)|(u, i) ∈ G, (u, j) /∈ G}, E denotes the learnable parameters in the LightGCN net-

work, and λ is a hyperparameter to control the regularization strength.

69

We first project the extracted item and attribute embedding ei ∈ Rdi , ec ∈ Rdc , to a

multi-modal latent space:

eti = ei ·Wi, (4.18)

etc = ec ·Wc . (4.19)

Here Wi ∈ Rdi,d and Wc ∈ Rdc,d are the transformation matrices for the item embeddings

and the attribute embeddings, respectively.

Next, we compute the aggregated attribute representation for each item through an

average operation on all the attributes associated with the same item. Given an item i and

the feature representation of its attribute set C = {etc1 , · · · , e
t
cn}, the aggregated attribute

representation for item i is then computed as:

evi =
1

|C|
∑
k∈C

eck . (4.20)

Following the set up in CLIP, we construct an item-attribute pairing objective to re-

fine the item embedding with item attribute information. Specifically, given a batch of N

(item, attribute) pairs, we aim to predict out of the N × N possible item-attribute pairs,

which N pairs actually exist. Given the item representations in the transformed latent

space, I = {eti1 , · · · , e
t
iN
}, and the corresponding aggregated attribute representations,

C⊑ = {ev1 , · · · , evN
}, a pairwise correlation score for each item-attribute pair can be com-

puted by measuring their cosine similarity.

The association measure function: The adapted CLIP model fits straightforwardly into

the proposed AIA framework. For each item k, there exists one real pair (etik , evk), and

N−1 incorrect pairs (etik , evj), (j ∈ [1, N], j ̸= k). The correlation score of the real pair sk

can be seen as the association measure function in AIA framework, and is defined as:

sk = etik · evk
(4.21)

70

On the other hand, the correlation score of an incorrect item-attribute pair, s̄k, is com-

puted as:

s̄jk = etik · evj
(4.22)

where (j ∈ [1, N], j ̸= k).

The association loss function: The loss function is defined such that the correlation score

for each real pair is maximized while the scores of the N−1 incorrect pairs are minimized.

Specifically, a cross-entropy loss is applied over the correlation scores:

L = −(sk) + log
∑

(j∈[1,N],j ̸=k)

s̄jk (4.23)

4.3 Discussion

Although attribute representations can contain rich information about items, efficiently

absorb them into item representations can be challenging. The three association measure

functions summarized in Table.4.1 explore the interactions between items and attributes

from different perspectives. Both KGAT’s and CLIP’s association measure functions have

a clear physical meaning. They both capture the belief that item and attribute represen-

tations should be similar in terms of the directions of the two representation vectors. The

key difference between KGAT and CLIP is whether this similarity measure is evaluated

in the original space (CLIP) of the item and attribute representation vectors, or in a trans-

formed space (KGAT). On the other hand, NFM explores the element-wise interactions

between representations of items and attributes. This element-wise operation encourages

each dimension in the item and attribute representations to describe a similar feature (e.g.

, colour, brand, price, etc.).

For the loss functions summarized in Table 4.2, one key difference is whether the log

is placed on the smoothed version of the association score difference (KGAT, NFM) or the

negative scores only (CLIP). In the design of CLIP’s loss function, the positive score si is

directly used without smoothing (e.g. , through esi or log(si)). Therefore, we can think

71

of CLIP as putting more weight on positive scores while smoothing the impact from the

negative scores.

4.4 Limitations of the AIA Framework

The introduced AIA framework is helpful in terms of exposing how hidden information

in the item attributes is explored. However, the framework has limitations. It is only

applicable to methods which: 1) explicitly learn feature representations for attributes; and

2) directly define the item and attributes feature interactions, as introduced in Section 4.2.

In other words, methods that implicitly use the attribute information cannot fit into our

proposed framework.

For example, in one of our baseline models, MGCCF [15], the attribute information

is only used in the item-item graph construction (the detailed description of the item-

item graph construction method is provided in Section 5.3.3). The model does not learn

specific attribute embeddings. There is no direct interaction in the model between the

features of the items and those of the attributes. Therefore, we cannot express MGCCF

using the AIA framework.

Another example is cVAE [94], which is also a baseline in our experiments. Given a

user-item interaction history and item-attribute information, a side information matrix

X ∈ Rd×n and an interaction matrix Y ∈ Rm×n are constructed, where m denotes the

number of users, n denotes the number of items, and d denotes the number of attributes.

As is the case for a standard variational auto-encoder, cVAE is composed of two compo-

nents: 1) an inference network with parameters ϕ, fϕ, which encodes the observed data

as a distribution over a latent space; and 2) a generation network with parameters θ, fθ,

which takes sampled points from the latent space and recovers the observed data. The ba-

sic idea of cVAE is to first train a variational auto-encoder such that the side information

matrix X is recovered:

Z ∼ fϕ(X),X ∼ fθ(Z) . (4.24)

72

The same network is then refined to recover the interaction matrix Y:

U ∼ fϕ(Y),Y ∼ fθ(U) . (4.25)

Here Z is the latent feature representation matrix and U is the latent user representation

matrix. The vectors in Z, U are assumed to follow Gaussian distributions.

Although an attribute embedding matrix is defined in cVAE (i.e. Z), there is no direct

measurement of the correlation between item embeddings and the attribute embeddings.

Therefore, neither the association measure function nor the association loss function can

be specified. As a result, cVAE cannot be expressed in our proposed framework.

In summary, in order to fit a method into the AIA framework, the method has to

maintain a trainable attribute representation matrix and there must be functions defined

to measure the correlation between an item representation and the representations of its

associated attributes. This is the major limitation of our proposed AIA framework.

4.5 Summary

In this chapter, we present a novel framework named AIA to encompass recommender

systems that incorporate item side information. The framework consists of two compo-

nents: the association measure function and the association loss function. We demon-

strate how different side information enhanced recommendation algorithms can be ex-

pressed in the proposed framework and discuss their major differences by comparing

their association measures and loss functions, viewed from the perspective of the AIA

framework. In the next chapter, we describe our proposed item side information en-

hanced recommendation system in detail and show how the different designs of associa-

tion measure functions we identified in this chapter have inspired us in the design of our

proposed method.

73

Chapter 5

Mutual Information Alignment (MIA)

In this chapter, the problem we are aiming to solve is first defined, followed by the intro-

duction of the overall structure of our proposed method, Mutual Information Alignment

(MIA) for recommender systems. Subsequently, the key components of MIA in details

are explained. We then describe experiments set up and compare the performance of

MIA with the state-of-the-art baselines. Experimental results, together with a discussion

of our findings are then presented.

5.1 Problem Definition

Our model is designed to learn high-quality representations of items by incorporating

item side information. These representations can then be used in the top-N recommen-

dation task. Specifically, following the notation defined in Table 3.1, given a user-item

interaction history, R ∈ Rn×m, and the item categorical indicator matrix, the model pre-

dicts a preference score for each user-item pair. Items with the top N scores are then

recommended to the users.

74

5.2 Overall Structure

The overall architecture of MIA is presented in Figure 5.1. MIA adopts a multi-view

alignment schema with three key components: (i) a user-item view that aims to generate

embeddings for users and items by processing the information in the UI interaction ma-

trix; (ii) an attribute view that acts as an encoder for item attribute features; and (iii) an

item-attribute alignment component with a mutual information estimator which strives

to maximize the mutual information between cross-view item-attribute pairs.

5.2.1 MIA in the AIA Framework

MIA is designed closely follows the AIA framework. In particular, the item-attribute

association function is equivalent to the item-attribute association measure function and

the alignment loss is equivalent to the association loss function in the AIA framework.

Details about these two functions are provided in Section 5.2.4.

5.2.2 User-item View

User-item (UI) relations are modeled in the UI view using a bipartite graph and explored

by LightGCN [14], a state-of-the-art collaborative filtering method. This component of the

recommender system is not the focus of our design, so in theory any approach could be

used (e.g. matrix factorization-based approaches [57,60], auto-encoder-based approaches

[66, 101], and other graph-based approaches [9, 102])

Construction of User-Item View: The user-item (UI) view mainly contains a UI in-

teraction graph. Given the UI interaction history, interactions can be represented in a

bipartite graph Gi = {(u, yui, i)|u ∈ U, i ∈ I}, where U and I represent the user and item

sets, respectively. An edge eui is considered a positive feedback of item i made by user u.

Learning in the UI View: Learning in the UI view is equivalent to learning node

embeddings for the UI bipartite graph. Here, we choose to use a state-of-the-art col-

75

Figure 5.1: The overall architecture of MIA. Arrowed lines denote the flow of information.

Every user, item and attribute is embedded into a d-dimensional space and eu ∈ Rd,

ei ∈ Rd indicate the latent representations of user u, item i learned from the user-item

view and ec ∈ Rd and ēc represent the latent representation of attribute c learned from

the attribute view and the aggregated attribute representation for an item, respectively.

laborative filtering method named LightGCN. The training objective of LightGCN [14]

is to learn item and user representations in order to achieve the best predictions of the

user preference. More formally, given the binary user-item interaction matrix R ∈ Rn×m,

the adjacency matrix of the bipartite graph can then be defined as a binary matrix A ∈

R(n+m)×(n+m) where:

A =

 0 R

RT 0

 (5.1)

The graph convolution in LightGCN is defined as:

E(k+1) = ÃE(k) = (D−
1
2AD−

1
2)E(k) (5.2)

76

where k is the number of layers and D ∈ R(n+m)×(n+m) is a diagonal matrix with Dii being

equal to the number of nonzero entries in the ith row of A. Ã = D−
1
2AD−

1
2 is the sym-

metrical normalized Laplacian matrix. E(k) denotes the embeddings from the kth layer.

The embeddings of the 0th layer, E(0) ∈ R(n+m)×d, are the only trainable parameters. The

final embeddings used for model prediction are obtained by summing the embeddings

from each layer to form a single representation:

E = E(0) + E(1) + E(2) + · · ·+ E(K)

= E(0) + ÃE(0) + Ã2E(0) + · · ·+ ÃKE(0)
(5.3)

To train the LightGCN model, a Bayesian Personalized Ranking (BPR) loss [57] is em-

ployed. This loss encourages the assignment of higher prediction scores to observed in-

teractions. The BPR loss is:

Litem view = −
n∑

u=1

∑
i∈Nu

∑
j /∈Nu

lnσ(ŷui − ŷuj) , (5.4)

where Nu is the one-hop neighborhood of u and σ(·) is the sigmoid function.

5.2.3 Attribute View

An attribute view is used to record the item attribute information. In MIA, we propose

to learn a representation for each attribute through a simple encoder approach. In this

approach, each attribute is mapped to a vector embedding. Given a set of attributes Z ,

the encoder function is simply an “embedding lookup”:

ENC(zi) = ziEc , (5.5)

where Ec ∈ R|C|×d is a matrix containing embedding vectors for all the attributes and

zi ∈ IC is an one-hot indicator vector indicating the row of Ec corresponding to attribute

zi. In this approach, the set of trainable parameters is simply ΘENC = {Ec}, i.e. , the

77

embedding matrix Ec is optimized directly and there is no specific attribute-view loss

function for this approach.

5.2.4 Mutual Information-Based Multi-view Alignment

A mutual information estimator is added to act as a multi-view alignment operator. The

intuition behind this component is that the attribute embeddings generated from the at-

tribute view should provide complementary information about the items, which is not

captured in embeddings generated from the user-item view. Therefore, to incorporate the

additional information into the item representations, we introduce a separate loss func-

tion that strives to align each item embedding with its associated attribute embeddings.

In particular, let ei denote the i-th item embedding generated from the user-item view,

and let Zi = {ec1 , · · · , eck} be the set of attribute representations of item i. We assume

that the attribute information can be aggregated through an element-wise sum operation.

The intuition behind this is as follows. Consider a scenario in which movie recommen-

dations are made for different users and the movie “Harry Potter” is associated with

three attributes: drama, adventure and fantasy. Intuitively, users who have interacted

with movies associated with all of the above attributes are more likely to be interested

in “Harry Potter” than users who have interacted with movies that only match one or

two of them. Therefore, we argue that all the attribute information should contribute to

the aggregated attribute representation in order for the system to better distinguish be-

tween different movies. In other words, we want to aggregate the attribute information

through an “and” operation without losing information contained in any one of the at-

tributes. Therefore, the element-wise sum operation is chosen. The aggregated attribute

representation of an item i is defined as:

ēic =
1

|Zi|
∑
l∈Zi

{ecl} (5.6)

78

Our goal is to maximize the mutual information between the item representation and

the aggregated attribute representation:

argmax Î(ei; ēic) , (5.7)

where Î(·) is the mutual information estimator.

Mutual Information Estimator To estimate the mutual information between a pair

of inputs, we use the Deep InfoMax (DIM) model proposed in [22]. This estimates the

mutual information by training a classifier to distinguish between samples from different

attributes. In particular, we use the formulation where the lower bound on the MI is based

on the Jenson-Shannon divergence (JSD) [22]. The objective of the alignment component

can then be defined as:

Lalignment = − argmax
ω

Î JSD(ei; ēic) ,

:= E[sp(Tω(ēi; e
i
c))]− E[sp(Tω(ei; e

i
c))] ,

(5.8)

where ēi is the negative item sampled from items with a completely different set of

attributes from item i, sp(z) = log(1 + Ez) represents the softplus function, and Tω :

X × Y −→ R is an item-attribute association function which measures the association

score between an item and its corresponding attribute(s) with parameters ω.

Item-Attribute Association Measure Function: We investigate three different meth-

ods to compute the association score: a bi-linear network, a fully connected feed-forward

network (FFN), and a bi-interaction network proposed in [1]. The definitions are de-

scribed in Table 5.1.
1W ∈ Rd×d is the trainable weight matrix.
2’||’ denotes the concatenation operation. W1,W2,W3,b1,b2,b3 are the trainable parameters in the

fully forward network.
3W1,W2 ∈ Rd×d are the trainable weight matrices.

79

Table 5.1: Comparison of different association measure functions, T . σ(·) denotes the

sigmoid function.

Method Formula

TBi-Linear
1 σ(eTi ·W · ēic)

TFFN
2 W3(σ(W2 · σ(W1(ei||ēic) + b1)) + b2) + b3

TBi-Interaction
3 σ(W1(ei + ēic)) + σ(W2(ei ⊙ ēic))

5.2.5 Model Prediction

The preference score of each user-item pair is generated by calculating the inner product

of the final item and user embeddings extracted from the user-item view:

yui = eTuei , (5.9)

where eu denotes the representation of user u and ei denotes item i’s representation.

5.2.6 Model Training

To optimize MIA, the objectives of each individual task are combined linearly to form the

final loss function:

Ltotal = αLitem view + Lalignment + λ||Θ||2 . (5.10)

Here α is the weight controlling how much each objective contributes to the final loss,

Θ is the model parameter set and λ denotes the L2 regularization hyperparameter. Note

that the trainable parameters in the model are: the embedding matrix of the 0th layer,

E(0), in the user-item view, the attribute embedding matrix, Ec, in the attribute view and

potentially the weight matrix in the multi-view alignment component.

80

5.3 Experimental Settings

In this section, we describe how data are prepared and how experiments are conducted

to evaluate our proposed framework on the Top-K recommendation task. To evaluate the

effectiveness of the proposed method, we conduct experiments on six real-world datasets.

We first conduct comprehensive experiments on different variants of MIA, to study how

different item-attribute association functions can impact the final performance. Next, we

compare the best MIA variant with state-of-the-art recommendation approaches with and

without incorporating side information. Overall, the experiments are designed to answer

the following research questions:

• RQ1: Among the three item-attribute association functions, which one can best cap-

ture interactions between items and features?

• RQ2: How does MIA perform compared to state-of-the-art item side information-

enhanced collaborative filtering methods?

In what follows, we first present the experimental settings and then address the research

questions.

5.3.1 Dataset

In this work, experiments are conducted on six benchmark datasets: Amazon-CDs, Amazon-

Movies, Amazon-Books, Amazon-Sports, Yelp and LastFM. All datasets are publicly accessi-

ble with various domains, sizes and sparsity:

• Amazon Reviews4: Amazon Reviews is a widely used dataset for recommendation

task [1, 15] which contains customer feedback and product metadata for various

collections of products on the Amazon e-commerce platform. Specifically, we treat

the explicit user ratings as implicit feedback by considering ratings higher than or

equal to four as positive feedback. Any other ratings are treated as negatives (as

4http://deepyeti.ucsd.edu/jianmo/amazon/index.html

81

are any items that are not rated). Category information is used as the item side

information. A product can belong to multiple categories.

• Yelp 5: This dataset contains user feedback and details about local businesses such

as restaurants and bars. As it is very large, we choose to use the transaction records

dated from January 1st, 2018 to December 31st, 2019. Again, we adopt a similar

approach, defining positive feedback from a user if the rating is higher than or equal

to four. Business categories are used as the only source of item side information.

• LastFM6: This is a music artist recommendation dataset that contains user listening

behaviours and user tags for artists. We adopted the same version used in [1, 21]

where a subset of the dataset is taken to include records with timestamps dated

from Jan 2015 to June 2015. Each artist is viewed as an item, and the tags assigned

by users are viewed as item attributes.

For all the datasets, we first remove items with no associated item side information.

We then apply a 10-core setting to filter out users and items with less than 10 interactions.

For each dataset, 70% of the interaction history of each user is used as the training set, and

10% of interactions are treated as a validation set to tune hyperparameters. The remaining

20% of the interactions are used as the test set. The statistics of the processed data are

summarized in Table 5.2.

Table 5.2: Statistics of evaluation datasets.

Dataset # Userss # Items # Interactions # Categories Density (%)

Amazon-CDs 35,423 13,306 713,693 280 0.151
Amazon-Movies 11,840 10,801 275,939 282 0.216
Amazon-Books 16,457 13,343 697,971 292 0.318
Amazon-Sports 9,371 5569 139,779 928 0.268
Yelp 18,280 13,334 779,968 766 0.319
LastFM 1090 3646 52551 388 1.322

5https://www.yelp.com/dataset/documentation/main
6https://grouplens.org/datasets/hetrec-2011/

82

5.3.2 Evaluation Protocols

The Setting of ”K”: In the literature of recommendation systems and the problem setting

in our thesis, we are interested in the system accuracy of the top-K recommended items.

Therefore, instead of computing evaluation metrics over all the items, we compute them

over the first K items. Thus, in the metrics introduced below, Recall@K and Ndcg@K, K is

a definable integer selected to match the top-K recommendation objective. Throughout

the experiments, K = 20 is used, which is a common choice in the recommender system

literature [1, 15, 52, 94].

Recall@K indicates the percentage of relevant items found in the top-K recommenda-

tion list. In particular, for a user-item pair, an item is considered relevant if the user is truly

interested in it (had a positive user rating). Mathematically, it is defined as:

Recall@K =
#. of relevant items in the top-K recommendation list

#. of total relevant items
(5.11)

For example, given a user with 10 relevant items in the test set, if we find that Recall@20 =

40% for this user in our top-20 recommendation system, we know that 40% of the total

number of the relevant items, i.e. 4 out of 10 relevant items, appear in the top-20 results.

Recall@K of a system is computed by averaging Recall@K over all its users.

Ndcg@K (Normalized Discounted Cumulative Gain), on the other hand, takes into

consideration the positions of the relevant items in the length-K recommendation list:

Ndcg@K =
DCG@K

iDCG@K
(5.12)

where

DCG@K =
K∑
i

2prei − 1

log2(i+ 1)
(5.13)

iDCG@K =
K∑
i

1

log2(i+ 1)
(5.14)

83

prei is the preference of the item at index i. Since we are considering binary preferences,

prei = 1 if the item at the i-th position belongs to the ground truth, and 0 otherwise. In

this way, an item at rank 1 would receive a relative weight of 1, whereas an item at rank

20 would receive a weight of 1/ log2(21).

For all experiments, we compare our model and baselines in terms of Recall@20 and

Ndcg@20.

5.3.3 Baseline Algorithms

To investigate the effectiveness of the proposed method, we compare the performance of

MIA with the following baselines. Note that I implemented all the baselines along with

the proposed method MIA in PyTorch.

Baseline 1: A state-of-the-art collaborative filtering (CF) method that does not incorporate side

information. Specifically, we choose the LightGCN [14] algorithm, which is also employed in the

user-item view component in our proposed method MIA. Comparison with this baseline is mainly

to assess the impact of the extra components (attribute view and item-attribute alignment).

LightGCN [14]: This is the state-of-the-art graph-based CF method that explicitly in-

tegrates a bipartite graph structure into the embedding learning process to model the

high-order connectivity in the user-item graph. The popular feature transformation com-

ponent and nonlinear activation layers are eliminated because these are observed to have

a detrimental effect on the performance in the recommendation scenario.

Baseline 2-6: Five state-of-the-art side information enhanced methods are studied and imple-

mented as baselines. In particular, we compare our proposed method MIA with a matrix factoriza-

tion method (NFM [2]), an auto-encoder-based method (cVAE [94]), graph neural network-based

methods (KGAT [1], MGCCF(Adapted) [15]) and an adapted tag-based recommendation method

(CLIP(Adapted) [3]).

NFM [2]: The state-of-the-art factorization-based recommender system that general-

izes the factorization machine (FM) by incorporating neural networks. In our experiment,

one hidden layer is used, as recommended in [9].

84

cVAE [94]: An auto-encoder based recommender system which jointly recovers user

ratings and side information through a variational auto-encoder. Following the settings

in the original paper, we first pre-train the cVAE by feeding it side information only and

then refine the model by feeding it user ratings.

KGAT [1]: A graph-based approach that aims to model high-order end-to-end rela-

tions to provide a better recommendation. The categories are represented as additional

entity nodes in a collaborative knowledge graph, and an edge is added between an item

and a category if the item belongs to the category.

MGCCF [15]: Designed to capture the intrinsic differences between item-item and

user-item relationships, MGCCF provides a framework to combine relational embed-

dings learned from separate graphs.

CLIP (Adapted) [3]: CLIP was originally designed for the image classification task.

The model trains the image label encoder and the image encoder simultaneously by pre-

dicting the correct label for an image. Inspired by CLIP, we modified the model such that

the image-label paring task is replaced by the item-attribute prediction task. Details about

the adapted CLIP are provided in Section 4.2.3.

5.3.4 Parameter Settings

All models are optimized using the Adam optimizer. The embedding size is fixed to 50

and the number of negative samples is set to 10. For all models, the loguniform sampling

method of the Ray.tune 7 package is applied to tune the learning rate in {1e−4, 1e−3, 1e−2},

and the L2 regularization coefficient λ in {1e−4, 1e−3, 1e−2, 1e−1}. In most cases, the best

learning rate magnitude is 1e−3. The best regularization coefficient is 1e−3 or 1e−4.

For models with a LightGCN [14] component (LightGCN, MIA), we follow the best

setting as reported in [14] and set the number of layers to 3 and dropout probability to

0.5.
7https://docs.ray.io/en/master/tune/index.html

85

https://docs.ray.io/en/master/tune/index.html

For MIA specifically, we search for the best objective weight α in {1e−4, 1e−3, · · · , 1e4}.

In most cases, the best tuned weight is of the order of magnitude as 1e−3.

Early-stopping is also implemented, i.e., training is stopped if Recall@20 on the vali-

dation set does not increase for 50 successive epochs. The maximum number of training

epochs is 1500.

5.4 Results

5.4.1 Impact of Item-Attribute Association Functions (RQ1)

To study the effect of the three item-attribute association functions defined in Section 5.2.4,

we compare these choices in terms of their impact on the model performance. Table 5.3

reports the average performance result over five trials with random weight initialization.

Table 5.3: Comparison of different item-attribute association methods on six datasets.

Method with the best performance is highlighted with underlined text.

MIA (Bi-Linear) MIA (FFN) MIA (Bi-Interaction)

Amazon-Movies Recall@20 0.0962±0.0015 0.0886±0.0016 0.1055±0.0011
Ndcg@20 0.0496±0.0007 0.0412±0.0008 0.0539±0.0005

Amazon-CDs Recall@20 0.1156±0.0008 0.1112±0.0008 0.1245±0.0007
Ndcg@20 0.0591±0.0004 0.0557±0.0005 0.0655±0.0004

Amazon-Books Recall@20 0.0815±0.0009 0.0799±0.0009 0.0831±0.0008
Ndcg@20 0.0428±0.0005 0.0404±0.0006 0.0442±0.0005

Amazon-Sports Recall@20 0.0776±0.0014 0.0763±0.0014 0.0812±0.0013
Ndcg@20 0.0415±0.0008 0.0374±0.0008 0.0433±0.0007

Yelp Recall@20 0.0613±0.0005 0.0593±0.0004 0.0660±0.0003
Ndcg@20 0.0502±0.0004 0.0480±0.0005 0.0544±0.0003

LastFM Recall@20 0.0914±0.0021 0.0899±0.0021 0.1015±0.0020
Ndcg@20 0.0464±0.0011 0.0455±0.0011 0.0503±0.0011

From the results demonstrated, we make the following observations:

86

• The bi-Interaction association measure function outperforms both Bi-Linear and FFN

functions for all datasets.

• Bi-Linear and Bi-Interaction are substantially superior to FFN across all datasets. This

highlights the importance of feature interactions between the item and the attribute

embeddings.

• Comparing the results of Bi-Linear function and Bi-Interaction function, although

both functions take into account the pairwise feature interactions, the Bi-Interaction

association function consistently outperforms the Bi-Linear association function. One

possible reason is that the element-wise operation (summation, multiplication) used

in Bi-Interaction association function is able to aggregate more information in the

item and attribute embeddings than the vector projection operation used in the Bi-

Linear function.

Overall, these observations are in line with our expectation that feature interaction is

important in assessing the association between items and attributes. Moreover, the re-

sults indicate the effectiveness of the element-wise operation in the case of item-attribute

interaction.

5.4.2 Comparison with Baselines (RQ2)

We compare the performance of the six baseline methods with the best variant of our

proposed method, MIA (Bi-Interaction). Results are presented in Table 5.4. For each

model, the average performance (with standard deviation) over 10 trials with random

weight initialization is reported.

Significance test - Wilcoxon signed rank test:

To determine whether the observed performance difference between our proposed

method and the best baseline method is significant across trials, we applied the Wilcoxon

signed-rank test. We use a ∗ in Table 5.4 to denote a statistically significant difference.

87

Since our sample size is relatively small (n = 10), we compare the obtained test statis-

tic, T , directly to the critical value of the Wilcoxon signed-rank test [103]. Specifically,

given a sample size n = 10, the obtained performance difference is statistically significant

if T ≤ 10 at the 5% significance level.

Table 5.4: Overall performance comparison w.r.t Recall@20 and Ndcg@20. The best and

the second-best model are denoted in underlined and bold fonts respectively. ”∗” indi-

cates a statistically significant difference between MIA and the best baseline method on

the Wilcoxon signed-rank test. %Improv. denotes the percentage of improvement of MIA

compared to the best baseline method.

Amazon-Movies Amazon-CDs Amazon-Books Amazon-Sports Yelp LastFM

LightGCN 0.0809±0.0008 0.0797±0.0003 0.0685±0.0006 0.0580±0.0012 0.0550±0.0002 0.0759±0.0015

MGCCF 0.0908±0.0010 0.0999±0.0005 0.0730±0.0007 0.0766±0.0014 0.0609±0.0003 0.0869±0.0018

cVAE 0.0690±0.0012 0.0712±0.0005 0.0555±0.0007 0.0512±0.0009 0.0514±0.0004 0.0709±0.0017

NFM 0.0886±0.0013 0.0912±0.0005 0.0721±0.0009 0.0648±0.0011 0.0600±0.0004 0.0862±0.0021

KGAT 0.1036±0.0011 0.1213±0.0006 0.0794±0.0007 0.0793±0.0013 0.0679±0.0002 0.0972±0.0019

CLIP 0.0932±0.0013 0.1171±0.0007 0.0804±0.0010 0.0769±0.0012 0.0603±0.0003 0.0905±0.0019

MIA (Bi-Interaction) 0.1055±0.0011* 0.1245±0.0007* 0.0831±0.0008* 0.0812±0.0013* 0.0660±0.0003 0.1015±0.0020*

%Improv. 1.83% 2.64% 3.36% 2.40% -2.80% 4.42%

(a) Recall@20

Amazon-Movies Amazon-CDs Amazon-Books Amazon-Sports Yelp LastFM

LightGCN 0.0386±0.0004 0.0417±0.0002 0.0401±0.0004 0.0305±0.0006 0.0401±0.0003 0.0333±0.0008

MGCCF 0.0412±0.0004 0.0566±0.0003 0.0409±0.0004 0.0374±0.0007 0.0480±0.0003 0.0408±0.0009

cVAE 0.0290±0.0003 0.0303±0.0002 0.0337±0.0004 0.0299±0.0006 0.0385±0.0002 0.0287±0.0008

NFM 0.0399±0.0006 0.0527±0.0004 0.0406±0.0005 0.0337±0.0006 0.0482±0.0003 0.0402±0.0011

KGAT 0.0521±0.0005 0.0641±0.0004 0.0423±0.0005 0.0428±0.0006 0.0549±0.0003 0.0489±0.0011

CLIP 0.0448±0.0004 0.0613±0.00004 0.0410±0.0004 0.0396±0.0007 0.0493±0.0003 0.0457±0.0010

MIA (Bi-Interaction) 0.0539±0.0005* 0.0655±0.0004* 0.0442±0.0005* 0.0433±0.0007 0.0544±0.0003 0.0503±0.0011*

%Improv. 3.45% 2.18% 4.49% 1.17% -0.91% 2.86%

(b) Ndcg@20

Based on the results, we make the following observations:

88

• MIA outperforms all the baselines in five out of six datasets, except for Yelp, where

MIA is outperformed by KGAT. In all cases, the performance difference between

MIA and KGAT is less than 5% on both metrics. Therefore, we conclude that MIA

and KGAT achieve comparable accuracy, with MIA achieving a small, but statis-

tically significant, improvement. Further analysis is conducted below to compare

these two methods.

• Comparing MIA with LightGCN, we can see that MIA outperforms LightGCN in

all cases, which demonstrates the effectiveness of the additional components in MIA

(attribute view and item-attribute alignment) that are specifically designed to incor-

porate item side information.

• Among all the side information-enhanced methods, cVAE is the only algorithm

whose performance is worse than LightGCN, a method that does not incorporate

side information, across all six datasets. This shows that cVAE cannot make effec-

tive use of the item knowledge. Incorporating item side information does not au-

tomatically guarantee a better performance; it must be integrated in a meaningful

way.

• Based on the study of the AIA framework, we saw that KGAT and NFM share the

same association loss function. But KGAT substantially outperforms NFM in all

cases. One reason for this is that KGAT has an extra objective which explores the

knowledge graph, as introduced in Section 4.2.1. Another possible reason is that

in NFM, pairwise interaction is not only conducted between user-item and item-

attribute pairs, but also among the user-attribute and attribute-attribute pairs. It is

difficult to see why these interactions provide meaningful information; their inclu-

sion may in fact harm the generalization power of the model.

89

5.4.3 Further Analysis of KGAT VS. MIA

From Table 5.4, we find that although MIA can outperform KGAT in some of the datasets,

the percentage improvement is relatively small (less than 5%). Therefore, we conduct

further analysis to compare these two methods. In particular, we compare KGAT and

MIA (Bi-Interaction) variants from two perspectives: computation complexity and con-

vergence speed.

Computation Complexity Analysis

We first analyze the computation complexity of KGAT and MIA.

Let |Euia| be the number of edges in the user-item-attribute knowledge graph em-

ployed in KGAT, and let |Eia| be the number of edges in the item-attribute graph, and let

|Eui| be the number of edges in the user-item graph. In most cases, we expect that the

graphs are sparse, so that |Eui| is O(|U |+ |I|).

As reported in [1], the overall computational complexity of KGAT is:

O(|Eia|d2 + L|Euia|dldl−1 + |Euia|d) (5.15)

where d0 = d is the initial embedding size, dl is the embedding size at layer l of the

GNN, and L is the number of layers in the GCN. The first term denotes the complexity

of knowledge graph embedding learning through the TransR [100] principle. The second

term represents the complexity of information propagation on the knowledge graph. The

third term is the complexity of the final prediction step.

The computational complexity of MIA arises from two components. In the user-

item view, the sparse matrix multiplication for the l-th layer in the LightGCN algorithm

has computational complexity O(|Eui|d) (Eq. 5.3). The attribute view involves a simple

lookup operation for the attribute latent representations and thus its complexity can be

ignored. For the item-attribute alignment view, the computational complexity of the ma-

trix multiplication operation in the bi-interaction association function is O(|Eia|d2). The

90

complexity of the final prediction layer is |Eui|d. In summary, the overall computation

complexity of MIA(Bi-Interaction) is:

O(|Eia|d2 + L|Eui|d) (5.16)

Theoretically, we see that our method has reduced complexity compared to KGAT.

In part, this is because we employ LightGCN, avoiding the O(d2) complexity of the con-

volution operations. However, an additional factor arises because MIA processes the

user-item and item-attribute graphs separately, whereas KGAT operates over a combined

user-item-attribute graph. Empirically, we compare the per epoch training time for both

methods. All the experiments were conducted on a single GPU of NVIDIA P100 Pascal

with 16G HBM2 memory. Results are reported in Table 5.5.

Table 5.5: Comparison of the per epoch training times over six datasets. Note that the

sampling time is excluded from the results.

Amazon
CDs

Amazon
Movies

Amazon
Books

Amazon
Sports Yelp LastFM

KGAT 250.3s 122.4s 217.3s 75.5s 278.7s 41.1s

MIA 90.8s 50.5s 79.2s 33.6s 103.1s 20.2s

As shown in Table.5.5, MIA is faster than KGAT in terms of training speed. For ex-

ample, KGAT requires approximately 250.3s for each epoch while MIA only needs 90.8s

per epoch for the Amazon-CDs dataset. Thus, we conclude that MIA has a better training

efficiency than KGAT both theoretically and empirically.

Convergence Analysis

We now analyze the convergence speed of KGAT and MIA. In this analysis, we compare

KGAT and MIA in terms of their training efficiency with respect to Recall@20. The results

are shown in Figure 5.2.

91

0 50 100 150 200 250 300 350
Epoch

0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

Re
ca

ll@
20

Amazon-Movie

KGAT
MIA

0 200 400 600 800 1000 1200
Epoch

0.02

0.04

0.06

0.08

0.10

0.12
Amazon-CD

KGAT
MIA

0 200 400 600 800 1000 1200 1400
Epoch

0.02

0.04

0.06

0.08

0.10

Re
ca

ll@
20

LastFM

KGAT
MIA

0 50 100 150 200 250 300 350 400
Epoch

0.02

0.03

0.04

0.05

0.06

0.07 Yelp

KGAT
MIA

Figure 5.2: Convergence speed comparison between MIA and KGAT on four evaluation

datasets wrt Recall@20. The horizontal dotted line denotes the 95% of KGAT’s best Recall

performance. The vertical dotted lines represent when both models reach within 5% of

KGAT’s best Recall for the first time.

From the results, we find that both models start from the same Recall@20. KGAT

slowly converges to its best value while MIA converges much faster. Specifically, MIA

settles to within 5% of KGAT’s best Recall@20 at around epochs 80, 100, 180 and 120 on

Amazon-Movies, Amazon-CDs, LastFM and Yelp, respectively, while KGAT reaches the

same performance at around epoch 250, 950, 900, 250. Thus KGAT requires at least twice

as many epochs as MIA for the four evaluation datasets.

To analyze the reason behind this significant difference in convergence speed, we com-

pare the information flow in both methods. Recall that we denote the j-th user as uj , the

j-th item as ij , and the j-th item side attribute as aj .

In MIA, item side information directly interacts with items only, and this occurs in

the item-attribute alignment component. The collaborative signal is propagated among

user-item pairs in the bipartite graph in the user-item view. On the other hand, in KGAT,

the collaborative signal is propagated over the entire knowledge graph, which leads to

information flow from items to users. Therefore, multi-hop connectivity can only be de-

92

fined between users and items in MIA. By contrast, direct connections exist between all

the entities (users, items, attributes) in KGAT. Taking a three-hop relation path for ex-

ample, in MIA it can be defined as: u1 → i1 → u2 → i2, whereas in KGAT it can be:

a1 → i1 → u1 → i2.

Considering the fact that item side information is mainly providing extra information

about items, propagating item side information to users (or via users) is potentially inef-

ficient. Overall, based on the results, the significant convergence difference demonstrates

the efficiency and effectiveness of our proposed item-attribute alignment component.

5.5 Summary

In this chapter, a multi-view alignment-based recommendation framework MIA has been

introduced to tackle the top-k recommendation problem given user interaction history

and item side information. The extensive experiments have demonstrated the effective-

ness and efficiency of MIA. In particular, a thorough comparison to a broad selection of

baselines and a careful complexity and convergence rate analysis on KGAT and MIA al-

gorithms have shown that MIA is able to achieve state-of-the-art performance, at least

comparable to KGAT, with a notable speed improvement.

93

Chapter 6

Conclusions

The project we presented in this thesis contributes to the field of recommender systems.

Specifically, the focus is on the incorporation of item side information in state-of-the-art

recommendation algorithms.

The need to develop side information-based enhanced recommendation systems arises

from the increasing collection of information about users and items. However, relative to

the number of new side information enhanced recommendation algorithms that have

been developed, there has been considerably less work investigating the key differences

between these algorithms. Therefore, the first contribution I make in this thesis is to

develop a unified framework named AIA to analyze these algorithms. The framework

identifies two key components that arise in most of the state-of-the-art algorithms for

incorporating item side information: (i) an item-attribute association function that de-

scribes how side information is absorbed into item representations, and (ii) an association

loss function that is used to train the association function. Although recommendation

architectures have been presented in very different ways (e.g., knowledge graph versus

multi-view), we show in Chapter 4 that by re-expressing them in the AIA framework, we

can expose their key differences, and these differences lie in how the association function

is defined and the loss function used to optimize it.

94

After presenting the AIA framework, we develop a multi-view item side information

enhanced recommendation algorithm called MIA, which is the second contribution of

this thesis. MIA performs item-attribute association by maximizing the mutual informa-

tion between related item-attribute pairs. We implemented the proposed method, along

with state-of-the-art baseline models in PyTorch and conducted extensive experiments

to evaluate the effectiveness of our method. The results demonstrate that the proposed

method achieves state-of-the-art recommendation accuracy, achieving a small, but statis-

tically significant improvement compared to the best baseline model for both recall@20

and ndcg@20 across most of the evaluation datasets. We present a complexity and con-

vergence speed analysis for further comparison between MIA and the best performing

baseline, KGAT. The results show that not only does MIA achieve a small improvement

in accuracy compared to KGAT, but its computational complexity is smaller, leading to

convergence speed. Therefore, the overall training time required for MIA is less than half

of that required for KGAT.

Future work

The proposed method can be extended in multiple ways. First, our method only fo-

cuses on one type of side information input, the item side information. A natural exten-

sion is to include other types of side information, particularly user attributes. However,

considering more types of input is a more challenging task. Theoretically, MIA can sup-

port numerous views. It would be interesting to explore MIA with extra views and see

how it affects the performance. For example, given users’ profiles, extra views (e.g., a

user-side attribute view, a user-attribute association view) can be added to increase the

system’s understanding of users. This may have a positive impact on the system’s per-

formance.

Another interesting direction of future work would be to explore other aggregation

methods such that a more complex scenario can be handled. For example, given an item

i and its set of attributes Ci = {Beauty & Personal Care, Skin Care, Body, Cleansers,

Shower Gels}, there exists a hierarchical relationship within the attribute data. Current

95

implementation simply aggregates item attributes by a summation operation, i.e. , each

attribute contributes the same amount to the final attribute representation. To explore the

hierarchical information in the attribute set, one strategy is to apply an attention mecha-

nism, which learns to assign a higher attention weight to an attribute that is more indica-

tive of an item’s characteristics [104–106].

96

Bibliography

[1] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “KGAT: Knowledge Graph Atten-

tion Network for Recommendation,” in Proc. ACM Conf. Knowledge Discovery and

Data Mining, Anchorage, AK, USA, Jul. 2019.

[2] X. He and T.-S. Chua, “Neural Factorization Machines for Sparse Predictive Ana-

lytics,” in Proc. ACM Conf. Research and Development in Information Retrieval (SIGIR),

Tokyo, Japan, Aug. 2017.

[3] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,

A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning Transferable

Visual Models From Natural Language Supervision,” in Prod. Int. Conf. Machine

Learning (ICML), Virtual, Jul. 2021.

[4] G. Linden, B. Smith, and J. York, “Amazon.com Recommendations: Item-to-Item

Collaborative Filtering,” J. IEEE Internet Computing, vol. 7, no. 1, pp. 76–80, Jan.

2003.

[5] Q. Zhao, Y. Zhang, D. Friedman, and F. Tan, “E-commerce Recommendation with

Personalized Promotion,” in Proc. ACM Conf. Recommender Systems, TU Wien, Aus-

tria, Sep. 2015.

[6] P. Covington, J. Adams, and E. Sargin, “Deep Neural Networks for YouTube Rec-

ommendations,” in Proc. ACM Conf. Recommender Systems, Boston, MA, USA, Sep.

2016.

97

[7] A. Anderson, L. Maystre, I. Anderson, R. Mehrotra, and M. Lalmas, “Algorithmic

Effects on the Diversity of Consumption on Spotify,” in Proc. Int. Conf. World Wide

Web, Taipei, Taiwan, Apr. 2020.

[8] Y. Koren, “Factorization meets the neighborhood: A multifaceted collaborative fil-

tering model,” in Proc. ACM Conf. Knowledge Discovery and Data Mining, Las Vegas,

NV, USA, Aug. 2008.

[9] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural Collaborative

Filtering,” in Proc. Int. Conf. World Wide Web, Perth, Australia, Apr. 2017.

[10] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational Autoencoders

for Collaborative Filtering,” in Proc. Int. Conf. World Wide Web, Geneva, Switzerland,

Apr. 2018.

[11] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “AutoRec: Autoencoders Meet Col-

laborative Filtering,” in Proc. Int. Conf. World Wide Web, Florence, Italy, May 2015.

[12] N. Dehmamy, A.-L. Barabasi, and R. Yu, “Understanding the Representation Power

of Graph Neural Networks in Learning Graph Topology,” in Proc. Adv. Neural Inf.

Process. Syst., Vancouver, Canada, 2019.

[13] M. Wang, Y. Lin, G. Lin, K. Yang, and X.-m. Wu, “M2GRL: A Multi-task Multi-view

Graph Representation Learning Framework for Web-scale Recommender Systems,”

in Proc. ACM Conf. Knowledge Discovery and Data Mining, San Diego, CA, USA, Aug.

2020.

[14] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “LightGCN: Simplifying

and Powering Graph Convolution Network for Recommendation,” in Proc. ACM

Conf. Research and Development in Information Retrieval (SIGIR), Virtual , Jul. 2020.

98

[15] J. Sun, Y. Zhang, C. Ma, M. Coates, H. Guo, R. Tang, and X. He, “Multi-graph

Convolution Collaborative Filtering,” in Proc. IEEE Int. Conf. Data Mining, Beijing,

China, Nov. 2019.

[16] N. Golbandi, Y. Koren, and R. Lempel, “Adaptive bootstrapping of recommender

systems using decision trees,” in Proc. ACM Conf. Web Search and Data Mining, San

Diego, CA, USA, Feb. 2011.

[17] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender

systems: A survey state-of-the-art and possible extensions,” J. IEEE Transactions

Knowledge and Data Engineering, vol. 17, no. 6, pp. 734–749, Jun. 2005.

[18] X. Du, X. Wang, X. He, Z. Li, J. Tang, and T.-S. Chua, “How to Learn Item Repre-

sentation for Cold-Start Multimedia Recommendation?” in Proc. ACM Conf. Multi-

media, Virtual, Oct. 2020.

[19] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “DeepFM: A factorization-machine based

neural network for CTR prediction,” in Proc. Int. Conf. Artificial Intell., Melbourne,

Australia, Aug. 2017.

[20] F. Vasile, E. Smirnova, and A. Conneau, “Meta-Prod2Vec: Product Embeddings Us-

ing Side-Information for Recommendation,” in Proc. ACM Conf. Recommender Sys-

tems, Boston, MA, USA, Sep. 2016.

[21] K. Zhou, H. Wang, W. X. Zhao, Y. Zhu, S. Wang, F. Zhang, Z. Wang, and J.-R. Wen,

“S3-Rec: Self-Supervised Learning for Sequential Recommendation with Mutual

Information Maximization,” in Proc. ACM Conf. Information and Knowledge Manage-

ment, Virtual, Oct. 2020.

[22] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler,

and Y. Bengio, “Learning deep representations by mutual information estimation

and maximization,” in Proc. Int. Conf. Learning Representations (ICLR), Vancouver,

Canada, Sep. 2018.

99

[23] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep

Graph Infomax,” in Proc. Int. Conf. Learning Representations (ICLR), New Orleans,

LA, USA, Sep. 2018.

[24] T. Zhang, M. Wang, J. Xi, and A. Li, “LPGNMF: Predicting Long Non-Coding RNA

and Protein Interaction Using Graph Regularized Nonnegative Matrix Factoriza-

tion,” J. IEEE Transactions Computational Biology and Bioinformatics, vol. 17, no. 1, p.

189–197, Jan. 2020.

[25] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph Neural Networks

for Social Recommendation,” in Proc. Int. Conf. World Wide Web, San Francisco, CA,

USA, May 2019.

[26] X. Chen and L. Pan, “A Survey of Graph Cuts/Graph Search Based Medical Image

Segmentation,” J. IEEE Reviews in Biomedical Engineering, vol. 11, pp. 112–124, Jan.

2018.

[27] W. L. Hamilton, “Representation Learning on Graphs: Methods and Applications.”

J. IEEE Data Eng. Bull., vol. 40, no. 3, pp. 52–74, 2017.

[28] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola,

“Distributed large-scale natural graph factorization,” in Proc. Int. Conf. World Wide

Web, New York, NY, USA, May 2013.

[29] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning Graph Representations with Global

Structural Information,” in Proc. Int. Conf. Information and Knowledge Management,

Melbourne, Australia, Oct. 2015.

[30] A. Grover and J. Leskovec, “Node2vec: Scalable Feature Learning for Networks,”

in Proc. ACM Conf. Knowledge Discovery and Data Mining, San Francisco, CA, USA,

Aug. 2016.

[31] W. L. Hamilton, Graph Representation Learning. Morgan and Claypool, 2020.

100

[32] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social repre-

sentations,” in Proc. ACM Conf. Knowledge Discovery and Data Mining, New York,

NY, USA, Aug. 2014.

[33] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-scale Informa-

tion Network Embedding,” in Proc. Int. Conf. World Wide Web, Geneva, Switzerland,

May 2015.

[34] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral Networks and Locally

Connected Networks on Graphs,” in Proc. Int. Conf. Learning Representations (ICLR),

Banff, Canada, May 2014.

[35] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on

large graphs,” in Proc. Adv. Neural Inf. Process. Syst., Long Beach, CA, USA, Dec.

2017.

[36] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning Convolutional Neural Net-

works for Graphs,” in Prod. Int. Conf. Machine Learning (ICML), Jun. 2016.

[37] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph

neural network model,” J. IEEE Transactions Neural Networks, vol. 20, no. 1, p. 61–80,

Jan. 2009.

[38] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph

Convolutional Neural Networks for Web-Scale Recommender Systems,” in Proc.

ACM Conf. Knowledge Discovery and Data Mining, London, UK, Jul. 2018.

[39] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks

on graphs with fast localized spectral filtering,” in Proc. Adv. Neural Inf. Process.

Syst., Red Hook, NY, USA, Dec. 2016.

101

[40] S. Tang, B. Li, and H. Yu, “ChebNet: Efficient and Stable Constructions of Deep

Neural Networks with Rectified Power Units using Chebyshev Approximations,”

arXiv: 1911.05467, Dec. 2019.

[41] A. Micheli, “Neural network for graphs: A contextual constructive approach,” J.

IEEE Transactions Neural Networks, vol. 20, no. 3, p. 498–511, Mar. 2009.

[42] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-

Guzik, and R. P. Adams, “Convolutional Networks on Graphs for Learning Molec-

ular Fingerprints,” in Proc. Adv. Neural Inf. Process. Syst., Montreal, Canada, Dec.

2015.

[43] H. Gao, Z. Wang, and S. Ji, “Large-Scale Learnable Graph Convolutional Net-

works,” in Proc. ACM Conf. Knowledge Discovery and Data Mining, London, UK, Jul.

2018.

[44] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in Proc. Adv.

Neural Inf. Process. Syst., Red Hook, NY, USA, Dec. 2016.

[45] F. Monti, M. M. Bronstein, and X. Bresson, “Geometric matrix completion with re-

current multi-graph neural networks,” in Proc. Adv. Neural Inf. Process. Syst., Long

Beach, CA, USA, Dec. 2017.

[46] J. Shang and M. Sun, “Geometric Hawkes Processes with Graph Convolutional Re-

current Neural Networks,” in Proc. AAAI Conf. Artificial Intell., Honolulu, HI, USA,

Jul. 2019.

[47] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based Recommenda-

tion with Graph Neural Networks,” in Proc. AAAI Conf. Artificial Intell., Honolulu,

HI, USA, Jul. 2019.

102

[48] W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, and J. Tang, “Session-Based Social

Recommendation via Dynamic Graph Attention Networks,” in Proc. ACM Conf. on

Web Search and Data Mining, Melbourne, Australia, Jan. 2019.

[49] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Heterogeneous Graph

Attention Network,” in Proc. Int. Conf. World Wide Web, New York, NY, USA, May

2019.

[50] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph

Attention Networks,” in Proc. Int. Conf. on Learning Representations, New Orleans,

LA, USA, Feb. 2018.

[51] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “GaAN: Gated Attention

Networks for Learning on Large and Spatiotemporal Graphs,” in Conf. Uncertainty

in Artificial Intell., Monterey, CA, USA, Mar. 2018.

[52] J. Sun, Y. Zhang, W. Guo, H. Guo, R. Tang, X. He, C. Ma, and M. Coates, “Neighbor

Interaction Aware Graph Convolution Networks for Recommendation,” in Proc.

ACM Conf. Research and Development in Information Retrieval (SIGIR), Virtual , Jul.

2020.

[53] A. van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music rec-

ommendation,” in Proc. Adv. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, Dec.

2013.

[54] J. A. Caliwag, R. A. Pagaduan, F. C. Reyes, J. P. C. Olos, and R. Castillo, “TrackMe:

A Recommender System for Preschools in Quezon City using Content-based Al-

gorithm,” in Proc. Int. Conf. on Information Science and Systems, Tokyo, Japan, Mar.

2019.

[55] X. Wang and Y. Wang, “Improving Content-based and Hybrid Music Recommen-

dation using Deep Learning,” in Proc. ACM Conf. Multimedia, New York, NY, USA,

Nov. 2014.

103

[56] H.-J. Xue, X.-Y. Dai, J. Zhang, S. Huang, and J. Chen, “Deep matrix factorization

models for recommender systems,” in Proc. Int. Conf. Artificial Intell., Melbourne,

Australia, Aug. 2017.

[57] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR: Bayesian

personalized ranking from implicit feedback,” in Proc. Conf. Uncertainty in Artificial

Intell., Arlington, Virginia, USA, Jun. 2009.

[58] J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang, “NetSMF: Large-Scale

Network Embedding as Sparse Matrix Factorization,” in Proc. Int. Conf. World Wide

Web, New York, NY, USA, May 2019.

[59] X. Chen, C. Du, X. He, and J. Wang, “JIT2R: A Joint Framework for Item Tagging

and Tag-based Recommendation,” in Proc. ACM Conf. Research and Development in

Information Retrieval (SIGIR), Virtual , Jul. 2020.

[60] S. Rendle, “Factorization Machines,” in Proc. IEEE Int. Conf. Data Mining, Sydney,

Australia, Dec. 2010.

[61] P. Forbes and M. Zhu, “Content-boosted matrix factorization for recommender sys-

tems: Experiments with recipe recommendation,” in Proc. ACM Conf. Recommender

Systems, New York, NY, USA, Oct. 2011.

[62] H. Zhang, I. Ganchev, N. S. Nikolov, Z. Ji, and M. O’Droma, “FeatureMF: An Item

Feature Enriched Matrix Factorization Model for Item Recommendation,” J. IEEE

Access, vol. 9, pp. 65 266–65 276, 2021.

[63] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson,

G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and

H. Shah, “Wide and Deep Learning for Recommender Systems,” in Proc. Workshop

on Deep Learning for Recommender Systems, New York, NY, USA, Sep. 2016.

104

[64] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, “xDeepFM: Combining

Explicit and Implicit Feature Interactions for Recommender Systems,” in Proc. ACM

Conf. Knowledge Discovery and Data Mining, New York, NY, USA, Jul. 2018.

[65] J. Han, Y. Ma, Q. Mei, and X. Liu, “DeepRec: On-device Deep Learning for Privacy-

Preserving Sequential Recommendation in Mobile Commerce,” in Proc. Web Conf.,

Virtual, Apr. 2021.

[66] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative Denoising Auto-

Encoders for Top-N Recommender Systems,” in Proc. ACM Conf. on Web Search

and Data Mining, San Francisco, CA, USA., Feb. 2016.

[67] N. Sachdeva, G. Manco, E. Ritacco, and V. Pudi, “Sequential Variational Autoen-

coders for Collaborative Filtering,” in Proc. ACM Conf. on Web Search and Data Min-

ing, Huston, TX, USA, Jan. 2019.

[68] R. van den Berg, T. N. Kipf, and M. Welling, “Graph Convolutional Matrix Comple-

tion,” in Proc. ACM Conf. Knowledge Discovery and Data Mining, London, UK, Aug.

2018.

[69] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural Graph Collaborative Fil-

tering,” in Proc. ACM Conf. Research and Development in Information Retrieval (SIGIR),

Paris, France, Jul. 2019.

[70] R. Sun, X. Cao, Y. Zhao, J. Wan, K. Zhou, F. Zhang, Z. Wang, and K. Zheng, “Multi-

modal Knowledge Graphs for Recommender Systems,” in Proc. ACM Conf. on In-

formation & Knowledge Management, Virtual, Oct. 2020.

[71] A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind sep-

aration and blind deconvolution,” J. Neural Computation, vol. 7, no. 6, pp. 1129–1159,

1995.

105

[72] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms. MA,

USA:MIT Press: Cambridge, 2003.

[73] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, A. Courville, and

D. Hjelm, “Mutual Information Neural Estimation,” in Prod. Int. Conf. Machine

Learning (ICML), Stockholm, Sweden, Jul. 2018.

[74] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “InfoGraph: Unsupervised and Semi-

supervised Graph-Level Representation Learning via Mutual Information Maxi-

mization,” in Proc. Int. Conf. Learning Representations (ICLR), Addis Ababa, Ethiopia,

Apr. 2020.

[75] M. D. Donsker and S. R. S. Varadhan, “Asymptotic evaluation of certain markov

process expectations for large time. IV,” Communications on Pure and Applied Mathe-

matics, vol. 36, no. 2, pp. 183–212, 1983.

[76] S. Nowozin, B. Cseke, and R. Tomioka, “F-GAN: Training generative neural sam-

plers using variational divergence minimization,” in Proc. Adv. Neural Inf. Process.

Syst., Barcelona, Spain, Dec. 2016.

[77] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new estimation

principle for unnormalized statistical models,” in Prod. Int. Conf. Artificial Intell. and

Statistics (AISTATS), Virtual, 2010.

[78] A. van den Oord, Y. Li, and O. Vinyals, “Representation Learning with Contrastive

Predictive Coding,” arXiv:1807.03748, Jan. 2019.

[79] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning Representations by Max-

imizing Mutual Information Across Views,” in Proc. Adv. Neural Inf. Process. Syst.,

Vancouver, Canada, Dec. 2019.

[80] Y. Tian, D. Krishnan, and P. Isola, “Contrastive Multiview Coding,” in Proc. Int.

Conf. Learning Representations (ICLR), New Orleans, LA, USA, Sep. 2019.

106

[81] A. Sankar, Y. Wu, Y. Wu, W. Zhang, H. Yang, and H. Sundaram, “GroupIM: A Mu-

tual Information Maximization Framework for Neural Group Recommendation,”

in Proc. ACM Conf. Research and Development in Information Retrieval (SIGIR), Virtual,

Jul. 2020.

[82] J. Cao, X. Lin, S. Guo, L. Liu, T. Liu, and B. Wang, “Bipartite Graph Embedding

via Mutual Information Maximization,” in Proc. ACM Int. Conf. Web Search and Data

Mining, Virtual, Mar. 2021.

[83] H. Hotelling, “Relations Between Two Sets Of Variates,” Biometrika, vol. 28, no. 3/4,

pp. 321–377, Dec. 1936.

[84] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, “Deep Canonical Correlation Anal-

ysis,” in Prod. Int. Conf. Machine Learning (ICML), Atlanta, USA, May 2013.

[85] B. Tan, E. Zhong, E. W. Xiang, and Q. Yang, “Multi-transfer: Transfer learning with

multiple views and multiple sources,” Statistical Analysis and Data Mining, vol. 7,

no. 4, Aug. 2014.

[86] Y. Li, M. Yang, and Z. Zhang, “A Survey of Multi-View Representation Learning,”

J. IEEE Transactions Knowledge and Data Engineering, vol. 31, no. 10, pp. 1863–1883,

Oct. 2019.

[87] C. Xu, D. Tao, and C. Xu, “A Survey on Multi-view Learning,” arXiv:1304.5634, Apr.

2013.

[88] Y. Zhang, Q. Ai, X. Chen, and W. B. Croft, “Joint Representation Learning for Top-

N Recommendation with Heterogeneous Information Sources,” in Proc. ACM Conf.

Information and Knowledge Management, Singapore, Singapore, Nov. 2017.

[89] Q. W. Y Guan and G. Chen, “Deep learning based personalized recommendation

with multi-view information integration,” Decision Support Systems, vol. 118, pp.

58–69, Mar. 2019.

107

[90] T. Liang, L. Zheng, L. Chen, Y. Wan, P. S. Yu, and J. Wu, “Multi-view factoriza-

tion machines for mobile app recommendation based on hierarchical attention,”

Knowledge-Based Systems, vol. 187, no. 104821, p. 1–11, Jan. 2020.

[91] D. Li, N. Dimitrova, M. Li, and I. K. Sethi, “Multimedia content processing through

cross-modal association,” in Proc. ACM Conf. Multimedia, New York, NY, USA, Nov.

2003.

[92] A. M. Elkahky, Y. Song, and X. He, “A Multi-View Deep Learning Approach for

Cross Domain User Modeling in Recommendation Systems,” in Proc. Int. Conf.

World Wide Web, Florence, Italy, May 2015.

[93] J.-J. Cai, J. Tang, Q.-G. Chen, Y. Hu, X. Wang, and S.-J. Huang, “Multi-View Active

Learning for Video Recommendation,” in Proc. Int. Conf. Artificial Intell., Macao,

China, Aug. 2019.

[94] Y. Chen and M. de Rijke, “A Collective Variational Autoencoder for Top-N Recom-

mendation with Side Information,” in Proc. Workshop on Deep Learning for Recom-

mender Systems, Vancouver, Canada , Oct. 2018.

[95] S. Liu, I. Ounis, C. Macdonald, and Z. Meng, “A Heterogeneous Graph Neural

Model for Cold-start Recommendation,” in Proc. ACM Conf. Research and Develop-

ment in Information Retrieval (SIGIR), Virtual, Jul. 2020.

[96] Y. Zheng, B. Mobasher, and R. Burke, “CSLIM: Contextual SLIM recommendation

algorithms,” in Proc. ACM Conf. on Recommender Systems, Silicon Valley, CA, USA,

Oct. 2014.

[97] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convo-

lutional Netoworks,” in Proc. Int. Conf. Learning Representations (ICLR), Toulon,

France, Apr. 2017.

108

[98] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative Filtering beyond the User-Item

Matrix: A Survey State Art and Future Challenges,” ACM Computing Surveys,

vol. 47, no. 3, p. 1–45, May 2014.

[99] S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme, “Fast context-

aware recommendations with factorization machines,” in Proc. ACM Conf. Research

and Development in Information Retrieval (SIGIR), Beijing, China, Jul. 2011.

[100] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings

for knowledge graph completion,” in Proc. AAAI Conf. Artificial Intell., Austin, TX,

USA, Jan. 2015.

[101] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational Autoencoders

for Collaborative Filtering,” in Proc. Int. Conf. World Wide Web, Geneva, Switzerland,

Apr. 2018.

[102] C. Feng, Z. Liu, S. Lin, and T. Q. Quek, “Attention-based Graph Convolutional

Network for Recommendation System,” in Int. Conf. Acoustics, Speech and Signal

Processing, Brighton, UK, May 2019.

[103] S. Kokoska and C. Nevison, Critical Values For The Wilcoxon Signed-Rank Statistic,

1989, vol. Statistical Tables and Formulae.

[104] W. Huang, E. Chen, Q. Liu, Y. Chen, Z. Huang, Y. Liu, Z. Zhao, D. Zhang, and

S. Wang, “Hierarchical Multi-label Text Classification: An Attention-based Recur-

rent Network Approach,” in Proc. ACM Conf. on Information and Knowledge Manage-

ment, Beijing, China , Nov. 2019.

[105] D. Zhang, S. Zhao, Z. Duan, J. Chen, Y. Zhang, and J. Tang, “A Multi-Label Classi-

fication Method Using a Hierarchical and Transparent Representation for Paper-

Reviewer Recommendation,” ACM Transactions on Information Systems, vol. 38,

no. 5, p. 1–20, Feb. 2020.

109

[106] P. Yao, Q. Peng, and T. Han, “Hierarchical Label Embedding Networks for Financial

Document Sentiment Analysis,” in Proc. Int. Conf. Computing and Artificial Intell.,

Sinapore, Sinapore, Apr. 2020.

110

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Overview
	Thesis Contributions and Organization

	Background
	Learning on Graphs
	Graphs: Definitions and Notation
	Node Embedding Learning
	Graph Neural Networks

	Recommender Systems
	Recommendation Scenarios
	Content-Based Filtering and Collaborative Filtering Recommendations
	Collaborative Filtering Techniques
	Graph-based Recommendation

	Mutual Information
	Introduction
	Mutual Information Estimation
	Mutual Information Maximization Solutions in Representation Learning

	Multi-View Representation Learning
	Preliminaries
	Multi-View Representation Fusion
	Multi-View Representation Alignment

	Summary

	Related Work
	Baseline Models
	Discussion
	Summary

	Side Information Enhanced Methods in A Unified Framework
	Overview of the AIA Framework
	The Association Measure Function
	The Attribute Aggregator (Optional)
	The Association Loss Function

	Item side Information Algorithms in AIA Framework
	KGATwangKGATKnowledgeGraph2019a
	Neural Factorization Machines (NFMs) heNeuralFactorizationMachines2017
	CLIP radfordLearningTransferableVisual

	Discussion
	Limitations of the AIA Framework
	Summary

	Mutual Information Alignment (MIA)
	Problem Definition
	Overall Structure
	MIA in the AIA Framework
	User-item View
	Attribute View
	Mutual Information-Based Multi-view Alignment
	Model Prediction
	Model Training

	Experimental Settings
	Dataset
	Evaluation Protocols
	Baseline Algorithms
	Parameter Settings

	Results
	Impact of Item-Attribute Association Functions (RQ1)
	Comparison with Baselines (RQ2)
	Further Analysis of KGAT VS. MIA

	Summary

	Conclusions

